
1

RECO – Recherche opérationnelle

Airport operations management

assistance Project

Attachment Document

BONATI Michelle – MONTANARI Filippo

All the technical aspects of the four solved problems are explained in detail in this

document. For each solution we added all the information that seemed necessary

in order to understand the implemented features.

Summary

1. Planning the schedule of check-in agents .. 2

2. Assignment of crews to flights .. 4

3. Ground operations management - passengers transport ... 8

4. Assignment of flights to boarding gates .. 9

2

1. Planning the schedule of check-in agents

VBA Code

The code of problem 1 mainly concerns the visual formatting of data.
NB: to integrate the solver in a VBA code, the solver reference must be added to the excel VBA
section. Otherwise, the VBA compiler won’t recognize the solver commands.

Solution_problème_1ab() – Solution_problème_1c()

These algorithms copy the input data into the solver table, then launch the solver and return the
results in the results table.

diagramme_1ab() - diagramme_1c()

These algorithms save all the meaningful solver results into a matrix. After that, they can format
the cells that are going to host the diagram and trace the graphic results inside them.
There is no risk of overwriting the upper cells, since the formatting is sensitive to input data, and
the algorithms can calculate the number of cells that are going to be needed.

effacer_diagramme_1ab() – effacer_diagramme_1c()

These algorithms recognize the space occupied by the diagram and clear and resize all the in-
volved cells.

Solver

Supporting table for the solver in problem 1a:

Supporting table for the solver in problem 1b:

3

Supporting table for the solver in problem 1c:

Notes

The meaning of the diagrams of problems 1a and 1b (how to read them) is shown below:

The meaning of the diagram of problem 1c (how to read it) is shown below:

Fig.5 How to read the diagram of the number of agents in problem 1c

o

4

2. Assignment of crews to flights

VBA code

For problem 2, only the most meaningful codes will be listed and explained.

Affectation_des_equipages()

This code runs all the different pieces of code in sequence, so as to create the Gannt chart of the
flights, write the adjacency matrix, find the flight sequences, trace them in their Gantt chart, and
finally launch the solver.
Finally, the results of the solver are saved and converted into a visual output on the user interface.
The formatting of the results table is sensitive to the number of crews found by the solver.

Other associated pieces of code:

• Reset_tableau_des_resultats_dans_le_feuille_dinput()

GanttVols()

Given the flights data, the algorithm traces the Gantt chart of the flights. This code can deal with
any number of input flights.
This code presented a problem when it was asked to make comparisons that involved the hour
11:00. in fact, in a first version, it didn’t correctly trace the first Gantt cell of the flights that started
at 11:00. This was probably due to conversion problems, and to solve it we added a ±0.001 to
the comparisons:

If Gantt hour + 0.001 >= departure time And

Gantt hour < arrival time - 0.001 Then

Color the cell

End If

Pseudo-code:
Count the number of flights

For each flight

For each time cell of the Gantt

If [the time on the GANTT chart is later or equal to the departure

time in the input table] And [the time on the GANTT chart is earlier

than the arrival time in the input table] Then

Mark the Gantt cell

End If

Next

Next

Other associated pieces of code:

• Code integrated in the sheet, that adjusts the size of the input table whether the user
changes the number of flights that he/she wishes to insert.

• Copier_les_donnees_dans_la_feuille_de_diagramme_Gantt()

• EffacerDonnes()

• EffacerGantt()

MatriceAdjacence()

Given the flights data, the algorithm traces the adjacency matrix of the flights. This code can deal
with any number of input flights.

5

Pseudo-code:
Count the number of flights

For each flight i

For each possible pairing flight j

If [the pairing flight j is different from flight i] And [the

departure airport of flight j is equal to the arrival airport of

the flight i] And [the departure time of the flight j is later than

the arrival time of flight i] Then

Write 1 into the cell

End if

Next

Next

Other associated pieces of code:

• Code integrated in the sheet, that adjusts the size of the input table whether the user
changes the number of flights that he/she wishes to insert.

• Copier_les_donnees_dans_la_feuille_de_la_matrice_dadjacence()

• EffacerDonnes()

• EffacerMatrice()

tableau_séquences()

Given the flights data and the adjacency matrix, the algorithm finds all the possible sequences and
adds them to the dedicated sequence table. The code can potentially deal with any number of
flights and sequences, but the formatting only suits 105 sequences and a maximum of 10 flights
in any sequence.
Moreover, the algorithm uses a ‘graphical method’ to close the explored path and continuously
jumps from a sheet to the other. This results in a rather slow execution.
A better version of the algorithm would save the adjacency matrix in a variable matrix, drastically
reducing the execution time.

Pseudo-code:
Count the number of flights n

line = 1 ‘line of the adjacency matrix = departure flight

While flight line <= n + 1

While there are still non-explored path starting from the current line

i = line

j = 1 ‘column of the adjacency matrix = arrival flight

While the column index j is lesser than n + 1

If the current cell i,j contains 1 And it has not a grey back-

ground Then

Save the column index j in an array (provisional sequence)

i = j ‘fundamental step: we set the line index i equal to the

column index j of the column in which we found 1

If in the previous sequence there isn’t the

same flight number j that we just added to

the current one in the same position Then

Unlock the closed cells that start with

the same flight number of the current one

End If

Else : j = j + 1 ‘next column = next arrival flight

End If

‘when j = n + 1 we exit the loop, because that means that we found

a void line and there are no flight starting from the current one

Wend

6

Close the last visited cell -> grey background

Write the provisional sequence in the sequence table

Check if there are other paths to follow starting from the current

line

Wend

line = line + 1 ‘next line = next first sequence flight

Unlock all the closed path -> bleach all the cells

Wend

Other associated pieces of code:
• EffacerTableauSequences()

Gantt_sequences()

Given the flights data and the sequences table, this algorithm traces the Gantt chart of each se-
quence. In this case, the input table is saved in a 50x7 matrix, thus making unnecessary to contin-
uous sheet jump. By doing this, we observed that the code is dramatically accelerated (from more
than 2 minute, to less than 2 seconds).
The code can deal with 50 flights due to matrix dimension, and with 105 sequences due to for-
matting reasons.

Pseudo-code:
Count the number of flights n

Save the input table in a matrix

Copy-paste the input table and associate to each flight a different color

Count the number of sequences m

For each sequence

j = 1 ‘index of exploration of the current sequence

While we have flights inside the sequence

For each flight ii inside the input matrix

If the element j of the sequence is equal to the flight number

ii inside the input matrix Then

For each time cell (1 to 24)

If the departure time of the flight ii is greater or equal

to the current time cell And the arrival time of the flight

ii is smaller than the current time cell Then

Add the flight ID to the current cell and color its

background with the respective color

End If

Next

End If

Next

j = j + 1 ‘next sequence element

Wend

Next

Other associated pieces of code:

• Vider_Gantt_Sequences()

7

Solver

The supporting table for the solver in problem 2 is shown aside.
This sheet also features:

• A VBA algorithm to calculate the cost of each sequence (5h + arrival
hour of the last flight – departure time of the first flight):

Calculer_cout_sequences()

• A VBA algorithm to automatically write the constraints:
Ecrire_les_contraintes()

This algorithm writes the constraint formula with a A on top, since
we couldn’t write into a cell in a sequential way starting with a ‘=’.
Therefore, after running the code the user will have to manually re-
move the A on top of each constraint formula.

The solver sheet doesn’t automatically adapt to problems with a differ-
ent number of flights and sequences.

o

8

3. Ground operations management - passengers
transport

VBA Code

The code of problem 3 mainly concerns the visual formatting of data.

Calculer_les_temps_de_passage()

This algorithm copies the input data into the solver table, then launches the solver and returns
the results in the results table.
Moreover, it returns information about the delays of the bus.

Other associated pieces of code:
• Effacer_les_donnees()

• Effacer_les_resultats()

Tracer_la_sequence_de_passage()

Starting from the results of the results table, this algorithm graphically indicates the sequence
that the bus should follow, together with the estimated arrival time and the delay for each stop.

Pseudo-code:
For each stop (plane/terminal)

Find the stop with the lowest arrival time among those which are left

Add the information about the chosen stop in the table of the sequence

Next

Solver

The supporting table for the solver in problem 3 is shown here.

In this modelling, a mistake to avoid consists in writing the time constraints
also for the travels direct toward 0 (the deposit).
In fact, in that case the problem has, of course, no solution, since it would
be impossible for the bus to make its last stop (Y5) before the departure
time (Y0).

The lines corresponding to these travels are colored in black in the con-
straints’ table beside.

9

Notes

This problem was treated as schedule problem 1|ri|T, in which 1 machine (the bus) must perform 6
tasks (visiting the plane/terminals/deposit) respecting availability time constraints ri and minimizing
the delay T.

o

4. Assignment of flights to boarding gates

Comment on the constraints listed at page 2 of the paper
Lim et al., 2005, Airport Gate Scheduling with Time Windows

OBJECTIVE FUNCTION:

𝑀𝑖𝑛𝑍 = ∑ ∑ ∑ ∑ 𝑓𝑖𝑗𝑤𝑘𝑙𝑧𝑖𝑗𝑘𝑙

𝑚

𝑙=1

+ ∑ 𝑝𝑖(𝑐𝑖 − 𝑎𝑖)

𝑛

𝑖=1

𝑚

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

We aim at minimizing the sum of the total distance walked by all passengers of all flights, and the sum
of penalties due to empty gates.

(𝑓𝑖𝑗 = number of passengers travelling from flight 𝑖 to flight 𝑗)

(𝑤𝑖𝑗 = distance to be travelled between flights 𝑖and𝑗)

(𝑝𝑖 = unit delay penality of flight 𝑖)

CONSTRAINTS (1—9) from the original article:

1)

∑ 𝑥𝑖𝑘 = 1,1 ≤ 𝑖 ≤ 𝑛

𝑚

𝑘=1

This constraint prevents a flight to be assigned to more than one gate.

2)
𝑧𝑖𝑗𝑘𝑙 ≤ 𝑥𝑖𝑘 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑚

𝑧𝑖𝑗𝑘𝑙 refers to a pair of flights in which flight 𝑖 is assigned to gate 𝑘, while flight 𝑗 is assigned to gate 𝑙.

This constraint tells us that 𝑧𝑖𝑗𝑘𝑙 can be equal to 1 if and only if 𝑥𝑖𝑘 is equal to 1, 0 otherwise.

3)

𝑧𝑖𝑗𝑘𝑙 ≤ 𝑥𝑗𝑙 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑚

This constraint tells us that 𝑧𝑖𝑗𝑘𝑙 can be equal to 1 if and only if 𝑥𝑗𝑙 equals 1, 0 otherwise.

Thus, summing up the last two constraints, we can conclude that in order to have 𝑧𝑖𝑗𝑘𝑙 = 1, both 𝑥𝑖𝑘

and 𝑥𝑗𝑙 must be equal to 1.

4)

𝑥𝑖𝑘 + 𝑥𝑗𝑙 − 1 ≤ 𝑧𝑖𝑗𝑘𝑙 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑚

On the other hand, this constraint requires that, if 𝑥𝑖𝑘 = 𝑥𝑗𝑙 = 1, then 𝑧𝑖𝑗𝑘𝑙 will also be equal to 1.

10

5)
𝑐𝑖 ≥ 𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑛

With this constraint it has been imposed that the time in which the flight 𝑖 starts occupying a gate must
be greater or equal to the time in which the gate returns available. This means that the flight cannot
occupy the gate unless the gate is free at the flight arrival time.

6)
𝑐𝑖 ≤ 𝑏𝑖 − 𝑑𝑖 , 𝑖 ≤ 𝑖 ≤ 𝑛

This constraint is necessary to ensure that flight 𝑖 starts occupying the gate in time to allow boarding
operations to be completed before the departure time (i.e. without exceeding the time window limit).

7)
(𝑐𝑖 + 𝑑𝑖) − 𝑐𝑗 + 𝑦𝑖𝑗𝑀 > 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛

First of all, 𝑦𝑖𝑗𝑀 = 0 if and only if there is overlap between flights 𝑖 and 𝑗. In addition, (𝑐𝑖 + 𝑑𝑖) is the

time at which flight 𝑖 frees its gate.
Thus, in case there is an overlap (𝑦𝑖𝑗𝑀 = 0) between services 𝑖 and 𝑗, this constraint imposes that the

end hour of service 𝑖 is greater than the start hour of service 𝑗. → (𝑐𝑖 + 𝑑𝑖) > 𝑐𝑗

8)

(𝑐𝑖 + 𝑑𝑖) − 𝑐𝑗 − (1 − 𝑦𝑖𝑗)𝑀 ≤ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛

On the contrary, −(1 − 𝑦𝑖𝑗)𝑀 = 0 if and only if there is no overlap between flights 𝑖 and 𝑗. Thus, in

case there is no overlap ((1 − 𝑦𝑖𝑗)𝑀 = 0) between services 𝑖 and 𝑗, this constraint requires that the

end hour of service 𝑖 is smaller than the start hour of service 𝑗. → (𝑐𝑖 + 𝑑𝑖) ≤ 𝑐𝑗

9)

𝑦𝑖𝑗 + 𝑦𝑗𝑖 ≥ 𝑧𝑖𝑗𝑘𝑘 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗, 1 ≤ 𝑘, 𝑙 ≤ 𝑚

𝑧𝑖𝑗𝑘𝑘 = 1 if and only if the flight 𝑖 and 𝑗 both occupy the gate 𝑘, while 𝑦𝑖𝑗 = 1 if and only if there is no

overlap between the two. Thanks to this constraint, we impose to flights 𝑖 and 𝑗 to not occupy the same
gate unless there is no overlap between them.
The constraint n°9 has been modified from the original client’s requirement (on Moodle).

VBA Code

The code of problem 4 concerns the visual formatting of data, the tracing of the Gantt charts and the
application of the Greedy Algorithm. The developed application can deal with any problem of the
same kind, with the same number of flights and the same number of gates.

Gantt_flights()

This algorithm traces the Gantt chart of the flights by using the information contained in the input
table. If the information concerning the real arrival time of a plane exists, then the algorithm
traces on the Gantt both the estimated and the real time window of each flight. Otherwise, it only
traces the estimated time windows.

Pseudo-code:
Count the number of flights

For each flight i

Save the estimated departure and arrival time in minutes, where the

00:00 of day 1 corresponds to 0 minutes.

Trace the estimated time window on the Gantt chart

11

If the ‘arrival time’ cell is not empty Then

Save the actual arrival time in minutes

Calculate the actual departure time by adding the ‘gate duration’

to the ‘arrival time’

If a portion of the actual time window is contained into the esti-

mated time window Then

Trace it in blue on the Gantt chart

End If

If a portion of the actual time window is not contained into the

estimated time window Then

Trace it in red on the Gantt chart

End If

End If

Next

Other associated pieces of code:

• Gantt_reset()

Greedy_algorithm()

This code implements the Greedy Algorithm, a heuristic method that allocates the flights to the
gates returning a possible solution. It is demonstrated that the solution returned by this algorithm
is also the best one.
After that, the code graphically returns the results by adding the flight into the Gantt chart of the
gates.

Pseudo-code:
Count the number of flights

Initialize the vector in which the last occupied minute of each gate is

stored g = {0, 0, 0, 0, 0}

For each flight

If the actual arrival time of the flight is known Then

Set the actual arrival time in minutes as start time

Calculate the end time by adding the ‘gate duration’ to the start

time

End If

If the actual arrival time of the flight is unknown Then

Save the estimated departure and arrival time in minutes as start

and end time

End If

Initialize the gate number to which the flight will be assigned to 6

(apron) -> GateN = 6

For each gate k = 1 To 5

If the gate k is the one with the longest schedule And the start

time of the flight is greater than the g(k) value Then

GateN = k

End If

Next

If GateN < 6 Then

Trace the flight inside the GateN line

Else : ad the flight number to the apron

End If

Next

12

Other associated pieces of code:

• Effacer_Greedy_Gantt()

Code integrated in the sheet to dynamically update the Gantt charts

This code automatically launches the two previous codes whenever a change is detected in the
‘arrival time’ column of the input table. The auto-update option can be disabled by erasing the
‘Oui ’ from the corresponding cell.

Pseudo-code:
If the content of any cell of the arrival time column changes Then

If the auto-update option cell is equal to “Oui” Then

Call the Gantt_flights procedure

Call the Greedy_algorithm procedure

End If

End If

Other pieces of code associated to the input table:

• Trier_vols()

• reset_horaires_arrivee()

Notes

The Gantt charts graphical resolution is of 5 minutes; therefore, it is impossible to reach a graphical
precision higher than 5 minutes. However, all the time comparisons are done with the real time val-
ues in minutes, and not with the rounded ones.
The role of the 5 minutes rounding is making the algorithms quicker. In fact, in this way the length of
all the loops that trace the Gantt charts is divided by 5.

o

