

POLITECNICO DI TORINO
Department of Mechanical and Aerospace Engineering

Bachelor’s Degree in Aerospace Engineering

Final Project

Feasibility Study for a Knowledge Base

of Enterprise Practices

Academic Supervisor: Prof. Paolo Maggiore

Company Supervisor: Engr. Francesco Lanteri

Candidate: Filippo Montanari

September 2018

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiYqJ3FrtrcAhWL_aQKHb22ADgQjRx6BAgBEAU&url=https://it.wikipedia.org/wiki/File:Politecnico_di_Torino_-_Logo.svg&psig=AOvVaw2ud3ulDFgo5ZPJnPNZSSWo&ust=1533711441421580

i

TABLE OF CONTENT

Preface v

Chapter 1: Feasibility Study: Goals, Development Approach and Solutions

1.1 Goals of the study 1

1.2 Presentation of the product 1

1.3 Method library development 1

1.4 Developer level goals and derived solutions 2

Chapter 2: TSO Practices Library
 2.1 Introduction 5

 2.2 TPL web-site 5

 2.3 Library internal architecture 10

2.4 TPL modules 11

2.5 Hierarchy of references 14

2.6 Level of specification of TPL content 15

2.7 Exportability to project management software 16

Chapter 3: Study Conclusions: Technical and Economic Considerations

 3.1 Collected evidence and lessons learned 17

3.2 Evaluation of possible benefits 17

3.3 Estimation of costs 18

3.4 Summary points 19

Appendix A: Introduction to Systems Engineering
 A.1 Introduction 21

 A.2 Definitions 21

 A.3 Development phasing 22

 A.4 The systems engineering process 23

A.5 Life cycle integration 24

A.6 Freedom degrees of systems engineering management 24

A.7 The process in detail 25

A.8 Summary points 27

Appendix B: Introduction to the CMMI® Institute Development Model
 B.1 Introduction 29

 B.2 Capability maturity models 29

 B.3 Process area components 29

 B.4 Capability and maturity levels 31

 B.5 Process areas 33

 B.6 Process improvement program 34

 B.7 CMMI models 34

ii

 B.8 Process istitutionalization 35

 B.9 Organizational process assets 36

Appendix C: Introduction to EPF Composer
 C.1 About the EPF Project 37

 C.2 Exemplary tool: EPF Composer 37

 C.3 Plug-ins logics 38

C.4 EPF method framework 39

C.5 EPF Composer elements 40

References and Resources List 43

Acronyms 45

iii

TABLE OF FIGURES

Figure 1.1 – Project development approach 2

Figure 1.2 – Dependencies between user-level goals, developer-level goals and developer-level solutions 3

Figure 2.1 – TSO Practices Library web-site Home Page 6

Figure 2.2 – ‘Peer Review’ practice web-page 7

Figure 2.3 – ‘MBSE process: GBTS SW Development and Maintenance’ delivery process web-page 8

Figure 2.4 – ‘Process Tailoring – method A’ activity diagram 9

Figure 2.5 – TPL modules and content division 10

Figure 2.6 – ‘coreTSO’ module content 11

Figure 2.7 – ‘processTSO’ module content 12

Figure 2.8 – ‘practiceTSO’ module content 13

Figure 2.9 – ‘publishTSO’ module content 14

Figure 2.10 – Main ‘publish’ plug-in content 14

Figure 2.11 – Scheme of an allowed tree of references 15

Figure 2.12 – Case study: ECS design process exported to Microsoft Project 16

Figure 3.1 – Role of collected evidence and lessons learned in TPL development cycle 17

Figure 3.2 – Case Study of instantiation 18

Figure A.1 – The three activities of systems engineering management 22

Figure A.2 – The systems engineering process 23

Figure A.3 – Detailed systems engineering process 25

Figure A.4 – Systems engineering and verification 26

Figure B.1 – CMMI model components 30

Figure B.2 – Process areas in the continuous and staged representations 32

Figure B.3 – Table of process areas, categories, and maturity levels 35

Figure C.1 – Exemplary tool: EPF Composer 37

Figure C.2 – Setting of a new method plug-in 39

Figure C.3 – EPF method framework 39

iv

v

Preface
The bachelor’s degree final project was developed in cooperation with Leonardo Aircraft Division

as an internship project together with the colleague Pippa Martina.

This project – proposed by the Training Software Organization of LAD – aims at testing and evalu-

ating new methods and tools reflecting the current state-of-the-art in the process engineering con-

text.

Systems engineering is nowadays one of the fastest growing engineering fields and the precious

support that process engineering brings is undeniable. As a result, keeping up with the emerging

technologies is fundamental in order to maintain a durable and safe company business.

In particular, for what concerns process engineering, two main problems have to be faced when de-

ploying a new product development process. Firstly, the working team needs to be instructed about

the different roles and responsibilities to cover within the process, and secondly, but not for im-

portance, a clear and unambiguous view on the activity sequence should be provided.

Currently, the Training Systems Organization of LAD can count on its dedicated Organizational

Process Asset Library (OPAL) to develop its products in accordance with the systems engineering

principles and the Capability Maturity Model Integration (CMMI) approach. The OPAL is made up

of static documents, divided by process areas as required by CMMI, but like any static knowledge

base, it does not really permit an easy, quick and focused consultation of its content.

It was within this context that the internship project was carried out; the final purpose, as the name

may suggest, was to study the implementation of a knowledge base of enterprise practices in its

technical and economic aspects.

Moreover, two main characteristics were required to the final product: to feature a user-friendly ap-

proach, so as to permit a quick and focused consultation of the desired pieces of content, and to pre-

sent a process tailoring section explaining to users how to instantiate a company standard process

on a customer’s specific project.

The knowledge base prototype was the final tangible product of the study, but the most important

outcome is the amount of ‘lessons learned’ and concepts extrapolated during the prototyping activi-

ties.

The implementation of the knowledge base was carried out with the framework tool EPF Compos-

er, developed within the EPF project of the Eclipse Foundation, in cooperation with IBM.

The Leonardo Company Tutor that personally followed this internship project is the Engineer Fran-

cesco Lanteri, of the Integrated Training Systems Organization of LAD.

vi

1

1.1 GOALS OF THE STUDY

This study, as stated in the Preface, was carried

out in cooperation with the Training Systems Or-

ganization of Leonardo Aircraft Division.

All the projects and processes for product devel-

opment of the Training Systems Organization are

currently regulated by a LAD standard approach,

based on official documents compliant with the

CMMI level 3 mandatory principles and guide-

lines.

With this study, it was explored the possibility to

enhance the current approach, improving its user-

friendly aspects and giving to customers the

chance to instantiate a standard process on a spe-

cific project.

In summary, the study tested the possibility of

providing LAD TSO employees with:

• a knowledge base of the LAD TSO official

standard processes and practices featuring an

easy and user-friendly consultation;

• a set of tailoring guidelines and procedures

useful to instantiate a standard process on a

specific project, always respecting the official

LAD TSO acceptance criteria for product de-

velopment processes.

Beside the technical aspects, a first evaluation of

the economic impact was conducted.

1.2 PRESENTATION OF THE PRODUCT

Before proceeding further, the product of the

study is hereafter briefly introduced.

It consists of a method library prototype edited

with the framework tool EPF Composer, with the

final purpose of publishing an html web-page of

organized content.

EPF Composer is – as stated by the Eclipse Foun-

dation – an open-source tool platform designed

for process engineers and project manager to au-

thor, tailor and publish methods and processes for

development organizations and projects. Read

‘Appendix C: Introduction to EPF Composer’ to

get a basic knowledge of EPF Composer and its

fundamentals.

TSO Practices Library (TPL) is the name given to

the developed knowledge base. It was filled with

content extrapolated from the Organization’ Pro-

cess Asset Library (OPAL) of Training Systems

Organization, that contains the official enterprise

processes for software products developments, di-

vided by process areas. See paragraph ‘B.9 Or-

ganizational Process Assets’ for further infor-

mation.

The second capability given to TPL is, as previ-

ously stated, to provide the user with a library of

reusable content, as well as an amount of proce-

dures explaining how to tailor and build a defined

process – fitting with a customer’s specific project

– starting from the existing standard processes and

process elements.

Beside OPAL consultation and tailoring features,

TPL also contains guidelines and procedures use-

ful to navigate inside TPL web-site and expanding

the method library by adding and integrating new

plug-ins.

The TSO Practices Library architecture and con-

tent is discussed in detail in ‘Chapter 2: TSO

Practices Library’.

1.3 METHOD LIBRARY DEVELOPMENT

The development of TSO Practices method library

required the preliminary definition of a develop-

ment cycle featuring an explorative approach,

firstly necessary to define the user level goals.

Chapter 1
FEASIBILITY STUDY: GOALS, DEVELOPMENT

APPROACH AND SOLUTIONS

2
 \r

As illustrated in Figure 1.1, the adopted approach

presents three main phases:

• a prototyping phase, consisting in the analysis

and the implementation of OPAL official

documentation into the TSO Practices Library

prototype;

• a learning phase, in which the prototyping ev-

idences are turned into formally explained

‘lesson learned’. In this case, the OPAL anal-

ysis and implementation provides, besides

mere inputs for technical adjustments, infor-

mation regarding the developer level goals,

explained in detail in the next chapters;

• a technical solution definition phase, which

gives information about the practical devel-

opment of the method library, especially for

what concerns about the possible adjustments

to the current library internal architecture.

This topic is discussed in detail in the next

chapter; also see ‘Appendix C: Introduction to

EPC Composer’ for further information about

EPF concepts regarding method library archi-

tecture.

These three steps were iterative and progressive,

since every trial did not lead to the best solution

but was a further step toward a suitable one.

1.4 DEVELOPER LEVEL GOALS AND DE-

RIVED SOLUTIONS

In this paragraph are set out the developer level

goals and – not less important – the developer

level solutions, as well as the interrelationships

between them. Figure 1.2 shows in general terms

the dependencies between user-level goals, devel-

oper-level goals and developer-level solutions.

Respecting the principles hereafter explained

makes possible to define a suitable method library

internal architecture, explained in detail in ‘Chap-

ter 2: TSO Practices Library’.

Developer level goals were written considering

the final and user-level purpose of the study, as

well as the potentiality and the limits of the

framework tool. Here they are listed and ex-

plained:

Content Reuse

This expression refers to the chance for TPL users

to have access to a wide repository of standard

content elements, with the opportunity to call up,

withdraw and reuse them in order to avoid creat-

ing new content (saving time and space on disk)

and to tailor a standard process so as to define a

specific one.

Pursuing this goal brings the following ad-

vantages:

• users benefit with a time saving, since there is

no need to create all the content from scratch,

• tailoring activities are enhanced for what con-

cerns rapidity and disambiguation,

• library maintainability and navigability are

increased,

• library files are lighter, and the tool best man-

ages with them.

Easy Maintenance

Maintenance activities are those actions aimed to

modify, expand or enhance TPL content. For

many of these activities, dedicated sections of

Figure 1.1 – Project development approach

3

TPL web-guide were created, in order to contain

guidelines and procedures concerning mainte-

nance activities.

Keeping an easy level of maintenance and proper-

ly maintaining TPL brings the following ad-

vantages:

• maintenance activities are encouraged,

• finding a certain piece of content inside the

method library is much easier and users’ time

is saved,

• the occurrence of problems related to address-

ing and plug-ins references is reduced.

Multiple Entry Points

An entry point is a virtual view on library content

with certain characteristics and organizational fea-

tures.

TPL aims to provide the users with the possibility

to choose the entry point that best suits their con-

sultation needs (what they exactly need to know),

and that must be possible at a rather high level.

For the specific case of TPL, entry points are di-

vided in ‘practice’ entry points and ‘process’ entry

points, that again are respectively sub-divided de-

pending on process areas, product types and de-

velopment approach.

Example: a TPL user is involved in the develop-

ment of an on-board avionic software with a

MBSE approach. Whenever this user needs a

piece of information regarding the requirements

development, it may be selectively found by

choosing the entry point called ‘Model Based En-

gineering Practices: MBSE - Requirements De-

velopment’. The name is self-explanatory; this en-

try point brings to the web-page of the LAD TSO

requirements development practice suitable to car-

ry on a software development process featuring

the MBSE approach.

Setting many different entry points presents the

following advantages:

• web-site navigability is enhanced,

• a focused consultation of specific pieces of

content is permitted.

Developer level solutions are to be kept into ac-

count while developing method library technical

arrangements. Namely they are:

Content Standardization

With standardization is meant any action aimed to

align all the content and process elements belong-

ing to a same type.

This topic also involves the evaluation of the cor-

rect specification level for every different TPL

piece of content, a topic not to neglect considering

the importance that ‘reuse’ has in the whole pro-

ject. See paragraph ‘2.6 Level of Specification of

TPL Content’ for further information.

Standardize content permits to reach the goals:

• Content Reuse:

content is much more suitable for reuse, since

content elements and specification levels are

aligned and reflect user's expectations.

• Easy Maintenance:

employees in charge of TPL maintenance may

count on the fact that content general features

and addressing are standardized and recorded.

Modularity

To be compliant with this solution, TPL architec-

ture features different kinds of plug-ins in which

content is logically divided, as well as a way of

grouping them which depends on the project to

Figure 1.2 – Dependencies between user-level goals, developer-level goals and developer-level solutions

4
 \r

which they are dedicated.

Concerning the first part, the different names

based on the different content kinds are discussed

in ‘Chapter 2: TSO Practices Library’.

The second point, instead, refers to the fact that

the content belonging exclusively to a customer’s

specific project may be wholly found inside a des-

ignated set of exportable plug-ins.

Finally, granting TPL expansibility is also a fun-

damental aspect of modularity.

Modularity contributes to reach the following

goals:

• Content Reuse:

adopting a modular architecture permits a

clear and defined chain of references, indis-

pensable to recall and reuse content of other

plug-ins (of a different kind and/or belonging

to a different set).

• Easy Maintenance:

employees in charge of maintaining TPL may

count on the fact that content related to a cir-

cumscribed topic is located inside the plug-ins

designated for that topic or, at most, in a ref-

erenced plug-in. Moreover, modularity per-

mits to import and export plug-ins.

• Multiple Entry Points:

entry points and plug-ins architecture (mod-

ules) find a very close way of development.

E.g. the source element of the entry point

‘MBSE - Requirements Development’ may be

found inside the same set of plug-ins (mod-

ules) that also contains the whole ‘MBSE -

Requirements Development’ content elements

and processes.

5
 \r

2.1 INTRODUCTION

TSO Practices Library prototype is the final tan-

gible product of the internship project with Leo-

nardo Aircraft Division.

This chapter firstly introduces the html web-site

of TPL, obtained by publishing the EPF source

method library. Every web-site feature offered to

the user is here explained and commented.

After that, also the TPL source method library is

shown in detail and explained, in order to permit a

better understanding of what lays behind TPL

web-site and what are some of the internal mech-

anisms of the framework tool EPF Composer.

2.2 TPL WEB-SITE

TPL web-site is composed of a multitude of html

pages and hyperlinks necessary to connect them.

Besides the main project goals – that were imple-

menting TSO OPAL documentation in a web li-

brary and providing a process tailoring systematic

approach – other implicit requirements were to be

considered, such as finding a suitable and user-

friendly setting for the web-site so as to keep nav-

igability at a rather easy level. Below is a list of

TPL navigation pages created to permit the con-

sultation of TPL features.

TPL Home Page

Opening the TPL web-site html file (index) brings

to the TPL home page.

As shown by Figure 2.1, in this page there are six

fields introducing different TPL features:

• a ‘Welcome’ field, explaining project general

purposes (user-level goals),

• a field to explain developer-level goals and

solutions,

• an ‘Help’ field, to solve user’s doubts about

TPL navigation and library development, and

that reports a hyperlink to TPL Guide Home

Page,

• a list of the external resources,

• a process tailoring brief description and a hy-

perlink to process tailoring procedure,

• a field introducing practices and standard pro-

cesses consultation and, lastly,

• a field designated for TPL expansion, that

again brings to TPL Guide Home Page.

TPL Guide Home Page

This navigation page is reached by clicking the

hyperlinks in TPL home page or, alternatively, in

the web-site sidebar.

It contains three fields concerning different fea-

tures:

• a ‘Navigation Guidelines’ field, introducing

the concept of web-site navigability and pre-

senting hyperlinks leading to these guidelines,

• a field explaining the TPL development ap-

proach and a hyperlink to the modelled pro-

cess concerning it,

• a field introducing TPL expansions and the

hyperlink leading to the process explaining

how to create them.

Practices Navigation Web-page

‘Practices’ hyperlink in TPL Home leads to the

main navigation page for TPL practices, that sorts

them by process areas category and development

approach: Project Management Practices, Process

Management Practices, Company Standard Engi-

neering Practices, Model Based Engineering Prac-

tices, and Support Practices.

The adopted practices classification was devel-

oped by the CMMI Institute and gathers process

areas – to which practices are related – into four

categories depending on their technical, economi-

cal or administrative aspect. See ‘Appendix B: In-

troduction to the CMMI® Institute Development

Model’ for further information about the CMMI

model and process areas.

Processes Navigation Web-page

Reached by clicking the ‘Processes’ hyperlink of

TPL Home, processes navigation main page pre-

sents four hyperlinks leading to four different de-

livery processes, each of them having its own

combination of product type (Aircraft or GBTS

software) and development approach (Company

Standard or MBSE), namely they are:

Chapter 2
TSO PRACTICES LIBRARY

6
 \r

• Company standard process: Aircraft Software

Development and Maintenance,

• Company standard process: GBTS Software

Development and Maintenance,

• MBSE process: Aircraft Software Develop-

ment and Maintenance,

• MBSE process: GBTS Software Development

and Maintenance.

The TPL prototype developed within this project

only contains four delivery processes which fea-

ture a V-model lifecycle. Clearly, it is possible to

build other delivery processes characterized by

other development approaches and lifecycles,

such as the prototyping model or the fountain de-

velopment model.

All the main TPL navigation pages are now ex-

plained.

In the following part, the substantial content of

TPL is presented, i.e. the web-pages of practices,

processes and the procedures for process tailoring

and TPL expansion.

Practices

Figure 2.2 shows the Peer Review Practice as an

example to display the typical web-page structure

of TPL – and, in general terms, all the EPF Com-

poser – practices; a first field briefly introduces

the content of the page, while a more detailed de-

scription is reported below. Field in the middle is

the most important of the web-page, since there

are linked the main process and method content

elements indispensable to effectively complete the

activities that the practice describe.

Practices are the transverse entry points on TPL

content that permit to the user a focused consulta-

tion of specific pieces of information.

Figure 2.1 – TSO Practices Library web-site Home Page

7
 \r

Processes

Figure 2.3 shows the GBTS Software Develop-

ment and Maintenance delivery process with a

MBSE development approach, which is one of the

four ‘V-modelled’ complete processes of TSO

Practices Library web-site.

A typical delivery process web-page presents four

views with different content; a main ‘Work

Breakdown Structure’ view, that shows process

activity diagram and the whole product develop-

ment procedure; a ‘Description’ view; a ‘Team

Allocation’ and a ‘Work Product Usage’ views,

that respectively give information about roles and

work products inside the process.

Differently from practices, the processes entry

points give to the user a complete and top-down

perspective on the product development process,

information that is particularly useful to under-

stand, learn and track the whole sequence of activ-

ities.

Tailor your Process

The ‘Tailor you Process’ practice is reached by

clicking on the dedicated hyperlink in TPL Home

Page. This practice gathers the main method con-

tent and process elements involved in process in-

stantiation activities and, besides that, two links

leading to delivery processes characterized by a

different tailoring approach:

• Method A, in which a standard delivery pro-

cess is copied in a designated directory and

there it is tailored till the defined process is

built. This approach is used in case the de-

fined process is mostly the same of the stand-

ard one, a not unusual occurrence considering

the standardization level that characterizes

systems engineering.

• Method B, which explains to recall existing

process elements and, whenever required, to

create new ones in the set of plug-ins dedicat-

ed to the specific project, in order to build up

the defined process. This approach is used

whenever the final customized process to ob-

Figure 2.2 – ‘Peer Review’ practice web-page

8
 \r

tain presents many differences compared to a

standard process, so that it is convenient to

build it from scratch using existing and new

process elements.

Both these approaches were developed from the

collected evidence and the lessons learned during

the prototyping activities, always considering TPL

fundamental principles so as to develop effective

and efficient procedures. Follows that process tai-

loring rigorous sequence of activities was entirely

developed in this project context, since there were

not external technical prompts concerning it.

Figure 2.4 illustrates Method A activity diagram;

a main division of preliminary and content man-

agement activities may be noticed.

Figure 2.3 – ‘MBSE process: GBTS SW Development and Maintenance’ delivery process web-page

9
 \r

The first part involves analysing and eliciting the

project specifics, as well as creating the necessary

method library plug-ins and copying the standard

delivery process, like required in Method A de-

scription.

After that, second part involves all the content

management activities, i.e. recalling and copying

existing content, creating new one and replacing

process and content elements where necessary.

Expand TPL

‘Expand TPL’ is part of TPL Guide web-site and

explains a procedure to create a new set of plug-

ins and fill them with everything necessary to be

published, that is new method content (if neces-

Figure 2.4 – ‘Process Tailoring – method A’ activity diagram

10
 \r

sary), new practices, new processes and new ele-

ments required to publish and navigate.

Expanding TPL is possible thanks to the funda-

mental modularity concept, and also it is enhanced

by the possibility of reusing existing content lo-

cated in other plug-ins.

TPL Development

Part of TPL Guide web-page, too, ‘TPL Devel-

opment’ consists of a delivery process that reports

the entire sequence of activities followed to create

TPL from scratch. This process is one of the final

products totally developed inside the ‘Feasibility

Study’ project and, due again to modularity, many

parts of it were reused in a later stage for model-

ling the ‘Expand TPL’ process.

Navigation Guidelines

After the two previous points, this is the last part

of TPL Guide web-page. It finds its utility by con-

sidering that the published TPL web-site always

has some intrinsic difficulties for what concerns

navigation, reason why users could need some

suggestions to effectively navigate inside it.

2.3 LIBRARY INTERNAL ARCHITECTURE

The previous paragraph aims to provide a general

comprehension of what TPL web-site offers to us-

ers. This paragraph, instead, digs deeper into

technical aspects, introducing TPL method library

architecture and, besides that, explaining much of

the framework content in detail.

Notice that this chapter deals with EPF Composer

elements and functions, also using its specific

terminology. See ‘Appendix C: Introduction to

EPF Composer’ (especially paragraph ‘C.5 EPF

Composer Elements’) for further information

about the topic.

The starting point for TPL internal architecture

development was the Eclipse exemplary library

‘EPF Practices Library 1.5.1.5’. Architectures of

TPL and Eclipse exemplary library present some

common points, even though TPL architecture

underwent a further development to be as compli-

ant as possible with the developer-level goals and

solutions defined within the project (especially

‘content reuse’ and ‘modularity’), also consider-

ing the functions and the technical limits of the

tool.

As stated before, library architecture was defined

and refined with an iterative process, in which a

first prototyping phase was followed by a learning

one and a technical-operative one. Any lesson

learned by the current development cycle was

used as an assimilate notion in the subsequent

one. Notice, though, that the produced – and here

discussed – architecture is one of the many that

could comply with project goals, and it is not ex-

pected to be the best one.

In Figure 2.1 are shown the four main kinds of

TPL modules next to their typical content.

Core

The ‘core’ module contains plug-ins dedicated to

most of TPL method content elements – except

for tasks – that namely are roles, work products,

guidance, and the main navigation pages.

Practice

In this module are gathered all the company offi-

Figure 2.5 – TPL modules and content division

11
 \r

cial practices. The aim of each of them is to pro-

vide focused information about the activities con-

cerning a certain process area. To practices are

linked the main process and method content ele-

ments regarding them.

Process

The ‘process’ module contains every element nec-

essary to build up processes and the processes

themselves. In tool terms, it contains tasks, capa-

bility patterns and delivery processes.

Publish

In the ‘publish’ module are all the custom catego-

ries used to gather similar content, e.g. a cluster of

practices or a set of guidelines, with the main pur-

pose of permitting the web-site navigation once

library is published. The substantial difference be-

tween these elements and those working as navi-

gation pages contained in ‘core’ plug-ins is that in

the first case the links between elements are of the

proper EPF Composer kind, while in the second

case the hyperlinks consist of simple and static

html content index, without the advantage of au-

tomatically changing whenever the object of the

link is moved.

2.4 TPL MODULES

The four modules in which TSO Practices Library

content is divided present the desinence ‘-TSO’ to

distinguish them from those belonging to the orig-

inal Eclipse exemplary library.

coreTSO

As shown in Figure 2.2, the ‘coreTSO’ module

gathers many directories sorting plug-ins with dif-

ferent types of content, namely:

• nav_view, containing the framework elements

of the main navigation pages, such as TPL

Home Page and TPL Guide Home Page, that

in practical terms are ‘guidance: supporting

material’ framework elements with rich text

descriptions and html hyperlinks.

• SEP_content, that contains the method con-

tent necessary to describe the company stand-

ard processes directly related to OPAL docu-

ments.

Module content is in turn sub-divided into

dedicated directories, one for each Standard

Enterprise Practice (SEP) in which OPAL

documents are divided, and one for the very

general content elements, such as important

and recurrent roles.

Figure 2.6 – ‘coreTSO’ module content

12
 \r

It can be noticed that only the content of three

SEPs (product development, product integra-

tion and test, and requirements planning and

management) was implemented inside TPL.

The reason is that those are the Standard En-

terprise Practices dedicated to the engineering

process areas, thus necessary for the technical

development of the tangible product.

• MBSE_content, that contains the method con-

tent elements exclusively necessary to de-

scribe product development processes with a

MBSE approach. Note that most of the ele-

ments used to describe MBSE processes are

the same used for processes featuring the

standard approach; of course, they are not re-

peated, but referenced and recalled from

‘SEP-content’ plug-ins.

MBSE_content is sub-divided into aircraft

content and ground-based training system

content to enhance modularity and maintaina-

bility.

• TPL_guide_content, containing method con-

tent elements concerned with process tailoring

(TYP), TPL expansion (HTE), TPL develop-

ment (HWD) and TPL navigation guidelines

(HTN).

• external_guidance, containing guidance ele-

ments coming from external sources, mainly

recycled from the Eclipse exemplary library

‘EPF Practices Library 1.5.1.5’.

• general_guidance, containing recursive guid-

ance elements with general and multiple pur-

pose.

processTSO

The plug-ins contained in this module must have

references only toward ‘core’ plug-ins, that are

necessary to complete processes with the involved

method content elements. See paragraph ‘C.3

Plug-ins Logics’ and ‘2.5 Hierarchy of Refer-

ences’ for detailed information about this topic.

As illustrated in Figure 2.7, ‘processTSO’ module

presents three main directories:

• SEP_processes, which contains processes and

process elements featuring the company

standard approach and are directly related to

those described in OPAL documents. The two

traditionally modelled delivery processes are

within the ‘overall_processes’ directory,

while sub-processes and smaller process ele-

ments are dislocated in Standard Enterprise

Practices (SEPs) – thus process areas – dedi-

cated plug-ins.

• MBSE_processes, that contains processes and

process elements featuring a MBSE develop-

ment approach. The two MBSE modelled de-

Figure 2.7 – ‘processTSO’ module content

13
 \r

livery processes are contained in the ‘over-

all_processes’ directory; most of the sub-

processes and process elements used to build

them are recalled by the ‘SEP_processes’ di-

rectory, while a few non-repeated process el-

ements were created afresh in the ‘air-

craft_process_units’ and ‘gbts_process_units’

directories.

• TPL_guide_processes, containing processes

and process elements that describe process

tailoring, TPL expansion and TPL navigation.

For each of these functions there is a desig-

nated directory.

practiceTSO

In order to link framework content to practices,

plug-ins contained in this module must have ref-

erences toward ‘process’ and, if necessary, ‘core’

plug-ins (note that referencing a ‘process’ plug-in

that in turn references a ‘core’ plug-in will make

possible to recall both ‘process’ and ‘core’ con-

tent). See paragraph ‘C.3 Plug-ins Logics’ for de-

tailed information about this EPF feature.

Figure 2.8 shows the ‘practiceTSO’ directories,

mostly analogous to ‘processTSO’ ones:

• SEP_practices, that contains practices which

offer a transverse view on company standard

software development similarly to what the

OPAL documentation does. In fact, the prac-

tices contained in this directory are the most

direct correspondence between TPL and

OPAL documents, since different pieces of

content are organized into different plug-ins

depending on which Standard Enterprise Prac-

tice they are related to.

• MBSE_practices, that contains those practices

that allow a MBSE version. TPL is specifical-

ly provided with product development and re-

quirements management practices, that are

those currently used by LAD. Procedures for

product integration and test with a model-

based approach do exist, but the current ver-

sion of TPL does not feature them.

• TPL_guide_practices, which contains practic-

es related to TPL Guide sections, namely pro-

cess tailoring, TPL expansion and develop-

ment – mostly sharing the same practices –

and TPL navigation.

publishTSO

This module content has the main purpose of

permitting TPL web-site navigation.

It mainly references ‘practice’ plug-ins, but also

‘core’ and ‘process’ ones whether necessary;

again, see paragraph ‘C.3 Plug-ins Logics’ for de-

tailed information about this topic.

Figure 2.9 shows the ‘publishTSO’ directories:

• SEP_divided_practices, containing custom

categories with the function of practices clus-

ters. In this directory, TPL practices are gath-

ered depending on which OPAL part they are

from, that is in which SEP their source docu-

ments can be located.

Figure 2.8 – ‘practiceTSO’ module content

14
 \r

• category_divided_practices, that con-

tain custom categories gathering the

same practices gathered by the previ-

ous directory, but with a different or-

der. In here, practices are sorted de-

pending on which CMMI category

their content belongs to.

• base plug-in content – illustrated in

Figure 2.10 – consists of custom cate-

gories that in turn gather other custom

categories. In TPL specific case these

elements are used to gather the just in-

troduced clusters of practices, all the

TPL delivery processes, and all the

TPL configuration views necessary to

build up the web-site sidebar.

• all_TPL_guide_nav, that similarly to

base plug-in contains custom catego-

ries used to gather and sort the differ-

ent TPL Guide pieces of content and

so to enhance the web-site navigabil-

ity.

2.5 HIERARCHY OF REFERENCES

Alongside with the division of framework

content into different directories, the hier-

archy of plug-ins references was devel-

Figure 2.9 – ‘publishTSO’ module content

Figure 2.10 – Main ‘publish’ plug-in content

15
 \r

oped.

References are a crucial part of EPF Composer

logics, and a proper management is indispensable

to build a sustainable TSO Practices Library. Par-

agraph ‘C.3 Plug-ins Logics’ better explains these

technical aspects of the software.

The hierarchy of references that characterizes TPL

is sparsely outlined in the previous paragraph.

Here it is explained in detail, also with the pur-

pose of permitting a better comprehension of what

lays behind its logics and the choices taken by the

developers.

The first and fundamental set of criteria that rules

the references chain of TPL is:

• a publish plug-in can have references toward

any other kind of plug-in (practice, process

and core);

• a practice plug-in can have references toward

the process and, implicitly, the core kinds of

plug-ins;

• a process plug-in can have references only

toward the core kind of plug-in;

• a core plug-in cannot have references toward

any other kind of plug-in.

Besides this, a plug-in can have a reference to-

ward another one belonging to its same kind pro-

vided that no circular reference is generated.

Circular references are not allowed by EPF Com-

poser for the clear reason that they would com-

promise the whole reference logics. Like stated in

paragraph ‘C.3 Plug-ins Logics’, references are

allowed as long as they have tree structure con-

sisting of more reference chains intersected to-

gether.

The references ticked in the publish plug-ins pre-

sent the biggest variability; some of them are used

to gather method content elements and navigation

pages located in core plug-ins, while others are

used to gather practices and processes.

In Figure 2.11 is shown a scheme reporting an ex-

ample of an allowed tree of references that rough-

ly resembles TPL structure.

Figure 2.11 – Scheme of an allowed tree of references

16
 \r

2.6 LEVEL OF SPECIFICATION OF TPL

CONTENT

TPL content developer has the delicate task of

choosing the best specification level for newly

created elements and processes.

Some factors condition this choice:

• usage frequency of an element,

• difference between a usage case and another,

• time required to specify it in the different us-

age cases.

The two general and opposite specification cases

are reported hereafter to provide a better compre-

hension of the concept. A content developer who

intends to create a general and versatile process

should keep it at a rather low level of specifica-

tion. Whenever a specification of that general pro-

cess is required, the lowly-specified content is

called up, customized and refined.

On the contrary, a developer that deals with

a more specific process can adopt a higher level

of specification, since the obtained process suits

only for a few cases and a sharper explication of

content is convenient.

2.7 EXPORTABILITY TO PROJECT MAN-

AGEMENT SOFTWARE

 IT market offers several tools for project man-

agement with support for project planning and

monitoring.

Some of them, such as Microsoft Project, permit

to import processes modelled with EPF Composer

so as to use the information they codify for project

planning and project management.

Specifically, project management software such as

Microsoft Project is designed to assist a project

manager in developing a plan, assigning resources

to tasks, tracking progress, managing the budget,

and analysing workloads. With them it is also

possible to optimize the project portfolio to priori-

tize initiatives and get the predefined results, as

well as enabling organizations to proactively

manage resource utilization, identify bottlenecks

early, accurately forecast resource needs, and im-

prove project selection and timely delivery.

Figure 2.12 shows the MBSE Process to design

the Environmental Control System (ECS) of an

Unmanned Aerial Vehicle (UAV) imported to

Microsoft Project. The inherited sequence of ac-

tivities can be integrated with resource deploy-

ment, worktime evaluations and budget aspects.

Figure 2.12 – Case study: ECS design process exported to Microsoft Project

17

3.1 COLLECTED EVIDENCE AND LESSONS

LEARNED

The collected evidence and the lessons learned dur-

ing the prototyping phase are a very important out-

come of the ‘Feasibility Study’ project.

These elements, as illustrated in Figure 3.1 and as

already stated in Chapter 1, are the result of a crit-

ical analysis of prototyping activities and are a fun-

damental input to enhance TPL features and inter-

nal architecture.

Moreover, the lessons learned permitted to formu-

late the study conclusions explained in this chapter,

in both their technical and economic aspects.

3.2 EVALUATION OF POSSIBLE BENEFITS

To properly evaluate the technical benefits and es-

timate the resulting economic impact is necessary

to look back at the project purposes.

In accordance to that, TPL users can actually ben-

efit from a navigable knowledge-base of standard

practices and processes; in detail, TPL offers:

• a top-down view on processes – and so a clear

information about the sequence of activities –

that can determine a considerable time saving,

especially for what concerns the learning times

for the youngest project engineers;

• a transversal view on processes by means of

practices web-pages, organized similarly to the

Standard Enterprise Practices of the document-

based OPAL of TSO;

• the chance of reusing framework content, thus

reducing ambiguities and avoiding the occur-

rence of doubts and misunderstandings.

For what concerns the ‘Tailor your Process’ feature

of TPL, users can instantiate a standard process on

Chapter 3
STUDY CONCLUSIONS: TECHNICAL

AND ECONOMIC CONSIDERATIONS

Figure 3.1 – Role of collected evidence and lessons learned in TPL development cycle

18
 \r

a specific project by following the proposed proce-

dure.

Developing a process tailoring procedure was the

final challenge of the internship project. Like stated

before, there were not significant external prompts

to direct the developers in this task, and besides sat-

isfying the tailoring goals it was also necessary to

be compliant with the already adopted TPL archi-

tecture and with EPF Composer functions and lim-

its.

The developed tailoring procedure can boast of

only one case study. Like shown in Figure 3.2, it

consists in the instantiation of the MBSE Process

for A/C software development on the project for de-

signing the Environmental Control System (ECS)

of an Unmanned Aerial Vehicle (UAV).

Implement a valid and efficient process tailoring

feature inside TPL – alongside with the chance of

reusing content – would bring the following ad-

vantages:

• defining a product development process in ac-

cordance with the customer’s needs and com-

pliant with internal (TSO) and external

(CMMI, Italian and European governments...)

regulations would take a shorter time;

• all the defined processes adopted for different

projects would have a good level of alignment

and, consequently, the occurrence of ambigui-

ties and doubtfulness would be reduced;

• EPF Composer offers the possibility to import

a defined process into software for project

management, such as Microsoft Project Man-

ager®.

The last advantage that TPL presents when com-

pared to the document-based OPAL regards

maintenance. In fact, a well optimized library that

is compliant with the content reuse and modularity

concepts is easier to maintain, especially for what

concerns keeping misunderstandings and ambigui-

ties as rare as possible.

3.3 ESTIMATION OF COSTS

The higher cost involved in the development of a

Company version of TPL is related to the required

workforce.

Firstly, the appointed library manager should be

sufficiently prepared and experienced in order to

edit an optimally organized library. EPF Composer

turned out to be a complicate and very delicate tool,

with many functions to learn dealing with and, in

case of inadequate usage, the risk of irreversible

damage to the method library is considerable.

Secondly, implementing the knowledge-base and

refining it till an acceptable level would require a

certain amount of time split between a main pro-

cess engineer and a supporting one. Evidences

showed that employing more than two persons for

directly working on the method library would cre-

ate an excessive dispersion of content and facilitate

the occurrence of severe problems.

Lastly, after TPL completion a designated role

should take care of TPL aspects concerning its con-

tinuous maintenance, mainly consisting in:

• keeping TPL updated to the latest version of

the Company practices, and

• supporting the internal customers that need to

model a defined process based on their specific

project.

Figure 3.2 – Case Study of instantiation

19

Another cost to mention derives from the difficul-

ties encountered by the users while navigating on

the html web-site, since it tends to be quite disper-

sive. It was thought that implementing a set of

good-navigation guidelines in TPL Guide might be

useful for users in order to avoid losing their bear-

ings.

However, like any difficulty that directly involves

the tool, a good knowledge of EPF Composer and

its ‘Publish’ function can make TPL web-site nav-

igation much easier.

Considering the times and the efforts made to ad-

vance this project, a rough workload estimation can

be done: the resources required to implement an ef-

fective and refined Company version of TPL could

amount up to two man-years of work, also consid-

ering the time necessary to learn using EPF Com-

poser and the time required to fully comprehend

every piece of content of the LAD TSO document-

based OPAL. Besides that, other resources are to

be spent to continuously maintain and update TPL.

3.4 SUMMARY POINTS

A navigable and company-shared knowledge base

featuring:

• reusable and modular content,

• practices and processes consultation,

• procedures and guidelines for process instanti-

ation,

could bring the following benefits to the Training

Systems Organization of LAD:

i. comprehending the Company standard

practices and processes would be easier,

thanks to a more user-friendly and direct ap-

proach;

ii. as a result, learning times for the youngest

process engineers would be reduced;

iii. it could be created a project-specific html

web-site by instantiating a standard deliv-

ery process on the customer’s project and

publishing it, also with the possibility of us-

ing the existing pieces of framework con-

tent;

iv. finally, a well optimized navigable

knowledge base would be easier to maintain

respect to a document-based one, since con-

tent repetition, dispersion and ambiguity

would be greatly reduced.

On the other hand, creating, maintaining and using

this kind of process engineering product has some

disadvantages and costs:

v. the html web-site navigation is not very

easy and intuitive; the user must spend a lit-

tle time dealing with it and, for the same

reason, providing the knowledge base with

good-navigation guidelines would be sug-

gested;

vi. to implement and maintain the knowledge

base is required a skilled and proficient role,

with a good knowledge of potentials and

limits of the framework tool EPF Com-

poser;

vii. at present the complete and accurate imple-

mentation of the knowledge base would

take up to two man-years of work, with a

maximum of two employees working on it;

viii. keeping the knowledge base continuously

updated would take a considerable amount

of time;

ix. concerning the operative aspects, problems

may easily arise while implementing the

knowledge base due to its complexity and

to EPF Composer management.

20
 \r

21

A.1 INTODUCTION

This appendix introduces the fundamental princi-

ples of systems engineering circumscribed to the

topics faced within the ‘Feasibility Study’ project.

The reported notions are not necessary to under-

stand the present essay, but are fundamental to ef-

fectively approach TPL, that is the tangible prod-

uct of the project. For this reason, it was thought

that providing readers with the most general prin-

ciples regarding the object of the study would

have been useful to permit a full comprehension

of every part of the project.

A.2 DEFINITIONS

A System is…

Simply stated, a system is an integrated composite

of people, products, and processes that provide a

capability to satisfy a stated need or objective.

Systems Engineering is…

Systems engineering consists of two significant

disciplines: the technical knowledge domain in

which the systems engineer operates, and systems

engineering management.

Three commonly used definitions of systems en-

gineering are provided by the best-known tech-

nical standards:

“A logical sequence of activities and deci-

sions that transforms an operational need

into a description of system performance

parameters and a preferred system configu-

ration. (MIL-STD 499A, Engineering Man-

agement, 1 May 1974. Now cancelled.)”

“An interdisciplinary approach that encom-

passes the entire technical effort, and

evolves into and verifies an integrated and

life cycle balanced set of system people,

products, and process solutions that satisfy

customer needs. (EIA Standard IS-632,

Systems Engineering, December 1994.)”

“An interdisciplinary, collaborative ap-

proach that derives, evolves, and verifies a

life-cycle balanced system solution which

satisfies customer expectations and meets

public acceptability. (IEEE P1220, Standard

for Application and Management of the

Systems Engineering Process, [Final Draft],

26 September 1994.)”

In summary, systems engineering is an interdisci-

plinary engineering management process that

evolves and verifies an integrated, life-cycle bal-

anced set of system solutions that satisfy customer

needs.

System Engineering Management is…

As illustrated in Figure A.1, systems engineering

management is accomplished by integrating three

major activities:

• Development phasing,

that has two major purposes: it controls the

design effort by developing design baselines

that govern each level of development, and it

interfaces with acquisition management by

providing key events in the development pro-

cess, where design viability can be assessed.

The viability of the baselines developed is a

major input for acquisition management Mile-

stone (MS) decisions.

• A systems engineering process,

that is the heart of systems engineering man-

agement. Its purpose is to provide a structured

but flexible process that transforms require-

ments into specifications, architectures, and

configuration baselines. The discipline of this

process provides the control and traceability

to develop solutions that meet customer

needs.

Appendix A
PRINCIPLES OF SYSTEMS ENGINEERING

22

Figure A.1 – The three activities of systems engineering management

• Life cycle integration,

necessary to ensure that the design solution is

viable throughout the life of the system. It in-

cludes the planning associated with product

and process development, as well as the inte-

gration of multiple functional concerns into

the design and engineering process. In this

manner, product cycle-times and the need for

redesign and rework can be substantially re-

duced.

The themes introduced is this paragraph are very

close to the topics of the ‘Feasibility Study’ pro-

ject. In fact, the purpose of the framework tool

EPF Composer consists in modelling the systems

engineering processes in their fundamental as-

pects, that are the sequence of activities, who is in

charge of performing them, what is required and

produced by any different step, and the careful in-

tegration of all these elements though the whole

product development process.

However, attention must be payed in order to dis-

tinguish between EPF Composer and systems en-

gineering management purposes.

EPF Composer is a process engineering tool

which permits to model and publish all the infor-

mation necessary to systems engineers for a cor-

rect execution of product development processes.

Differently, Systems engineering management fo-

cuses on how to design and manage complex sys-

tems over their life cycle, and thus precedes the

modelling activity carried out by a process engi-

neering tool such as EPF Composer.

In the following paragraphs are explained in de-

tail the three major activities of systems engineer-

ing management

A.3 DEVELOPMENT PHASING

Development usually progresses through distinct

levels (or stages):

1. concept level, which produces a system con-

cept description,

2. system level, which produces a system de-

scription in performance requirement terms,

3. subsystem/component level, which produces a

product characteristics and performance de-

scription for each subsystem and component.

The systems engineering process is applied to

each level of system development, one level at a

time, to produce these descriptions commonly

called configuration baselines. Baselines become

more detailed with each level.

23

In the Department of Defence (DoD), the configu-

ration baselines are called:

• functional baseline for the system-level de-

scription,

• allocated baseline for the subsystem/compo-

nent performance descriptions, and

• product baseline for the subsystem/compo-

nent detailed descriptions.

About Reviews and Audits…

A significant development at any given level in

the system hierarchy should not occur until the

configuration baselines at the higher levels are

considered complete, stable, and controlled: re-

views and audits are used to ensure that the base-

lines are ready for the next level of development.

These review and audit processes also provide the

necessary assessment of system maturity, which

supports the DoD Milestone decision process.

Also read the voice ‘Verification’ of paragraph

‘A.7 The Process in detail’.

A.4 THE SYSTEMS ENGINEERING PRO-

CESS

The Systems Engineering Process is a top-down

comprehensive, iterative and recursive problem

solving process, applied sequentially through all

stages of development, that is used to transform

needs and requirements into a set of system prod-

uct and process descriptions (adding value and

more detail with each level of development), as

well as to generate information for decision mak-

ers and provide input for the next level of devel-

opment.

As illustrated by Figure A.2, the fundamental sys-

tems engineering activities are:

• requirements analysis,

• functional analysis and allocation, and

• design synthesis,

all balanced by techniques and tools collectively

called system analysis and control.

Systems engineering controls are used to track de-

cisions and requirements, maintain technical base-

lines, manage interfaces, manage risks, track cost

and schedule, track technical performance, verify

requirements are met, and review/audit the pro-

gress.

During the systems engineering process architec-

tures are generated to better describe and under-

stand the system. The word ‘architecture’ is used

in various contexts in the general field of engi-

neering, however, Systems Engineering Manage-

ment as developed in DoD recognizes three uni-

versally usable architectures that describe im-

Figure A.2 – The systems engineering process

24

portant aspects of the system:

• functional architecture identifies and struc-

tures the allocated functional and performance

requirements;

• physical architecture depicts the system prod-

uct by showing how it is broken down into

subsystems and components;

• system architecture identifies all the products

that are necessary to support the system and

all the processes necessary for development,

production/construction, deployment, opera-

tions, support, disposal, training, and verifica-

tion.

A.5 LIFE CYCLE INTEGRATION

Life cycle integration is achieved through inte-

grated development, that is the concurrent consid-

eration of all life cycle needs during the develop-

ment process – activity that can be greatly en-

hanced through the use of interdisciplinary teams,

often referred to as Integrated Product Teams

(IPTs).

The objectives of an IPT are to produce a design

solution that satisfies initially defined require-

ments and communicate that design solution

clearly, effectively, and in a timely manner.

Life Cycle Functions

The eight primary life cycle functions are the

characteristic actions associated with the system

life cycle:

1. Development includes the activities required

to evolve the system from customer needs to

product or process solutions.

2. Manufacturing/production/construction in-

cludes the fabrication of engineering test

models, low rate initial production and full-

rate production of systems and/or end items.

3. Deployment (fielding) includes the activities

necessary to initially deliver, assemble, in-

stall, checkout, train, operate, or field the sys-

tem to achieve full operational capability.

4. Operation is the user function and includes

activities necessary to satisfy defined opera-

tional objectives and tasks.
5. Support includes the activities necessary to

provide operations support, maintenance, lo-

gistics, and material management.

6. Disposal includes the activities necessary to

ensure that the disposal of system components

meets all applicable regulations and direc-

tives.

7. Training includes the activities necessary to

achieve and maintain the knowledge and skill

levels necessary to efficiently and effectively

perform operations and support functions.

8. Verification includes the activities necessary

to evaluate progress and effectiveness of

evolving system products and processes,

measuring specification compliance.

These activities cover the ‘cradle to grave’ life cy-

cle process. The system user’s needs are empha-

sized because they generate the requirement for

the system, but it must be remembered that all of

the life-cycle functional areas generate require-

ments for the systems engineering process once

the user has established the basic needs.

A.6 MANDATORY RULES OF SYSTEMS

ENGINEERING MANAGEMENT

DoD establishes two fundamental requirements

for program management: it requires the adoption

of an Integrated Product and Process approach,

wherever practicable, and to use a disciplined sys-

tems engineering process to translate operational

needs and/or requirements into a system solution.

Tailoring the Process

System engineering is applied during all acquisi-

tion and support phases for systems development

and product improvements. Thus, the process

must be tailored for different needs and/or re-

quirements.

Tailoring considerations include system size and

complexity, system definition detail level, scenar-

ios and missions, constraints and requirements,

technology base, major risk factors, and organiza-

tional best practices.

E.g., systems engineering of software should fol-

low the basic systems engineering approach.

However, it must be tailored to accommodate the

software development environment, and the

unique progress tracking and verification prob-

lems software development entails. In a like man-

ner, all technology domains are expected to bring

their own unique needs to the process.

25

Handbooks about the subject provide only a con-

ceptual-level description of systems engineering

management. Technical managers must tailor their

systems engineering planning to meet their partic-

ular requirements and constraints, provided

though that the basic time-proven concepts inher-

ent in the systems engineering approach are re-

tained to provide continuity and control.

A.7 THE PROCESS IN DETAIL

The Systems Engineering Process is, as already

stated, a comprehensive, iterative and recursive

problem solving process, applied sequentially top-

down by integrated teams.

It transforms needs and requirements into a set of

system product and process descriptions, generate

information for decision makers, and provides in-

put for the next level of development.

All the elements included in the Systems Engi-

neering Process are shown by Figure A.3 and

hereafter explained:

Systems Engineering Process Inputs

Inputs consist primarily of the customer’s re-

quirements, and project constraints.

Inputs can include missions, measures of effec-

tiveness, environments, available technology base,

output requirements from prior application of the

systems engineering process, program decision

requirements, and requirements based on ‘corpo-

rate knowledge’.

Requirements Analysis

The first step of the Systems Engineering Process

is to analyse the process inputs. Requirements

analysis is used to develop functional and perfor-

mance requirements: customer requirements are

translated into a set of requirements that define

what the system must do and how well it must

perform.

The systems engineer must ensure that the re-

quirements are understandable, unambiguous,

comprehensive, complete, and concise. Require-

Figure A.3 – Detailed systems engineering process

26

ments analysis must clarify and define functional

requirements and design constraints.

Functional Analysis/Allocation

Functional analysis is performed decomposing

higher-level functions – identified through re-

quirements analysis – into lower-level functions.

The performance requirements associated with the

higher-level are allocated to lower functions. The

result is a description of the product or item in

terms of what it does logically and in terms of the

performance required. This description is often

called the functional architecture of the product.

Functional analysis and allocation permit to better

understand what the system has to do, in what

ways it can do it, and the priorities and conflicts

associated with lower-level functions.

Key tools in functional analysis and allocation are

functional flow block diagrams, time line analysis,

and the requirements allocation sheet.

Requirements Loop

Performing the functional analysis and allocation

gives a better understanding of the requirements

and should prompt a reconsideration of the re-

quirements analysis.

Each function identified should be traceable back

to a requirement. This iterative process of revisit-

ing requirements analysis as a result of functional

analysis and allocation is referred to as the re-

quirements loop.

Design Synthesis

Design synthesis is the process of defining the

product or item in terms of the physical and soft-

ware elements which together make up and define

the item.

The result is often referred to as the physical ar-

chitecture and is the basic structure for generating

the specifications and baselines.

Design Loop

Similar to the requirements loop described above,

the design loop is the process of revisiting the

functional architecture to verify that the physical

design synthesized can perform the required func-

tions at required levels of performance.

The design loop permits reconsideration of how

the system will perform its mission, and this helps

optimize the synthesized design.

Figure A.4 – Systems engineering and verification

27

Verification

For each application of the system engineering

process, the solution will be compared to the re-

quirements. This part of the process is called the

verification loop, or more commonly, Verifica-

tion. Each requirement at each level of develop-

ment must be verifiable.

Baseline documentation developed during the sys-

tems engineering process must establish the meth-

od of verification for each requirement. Appropri-

ate methods of verification include examination,

demonstration, analysis (including modelling and

simulation), and testing. Formal test and evalua-

tion (both developmental and operational) are im-

portant contributors to the verification of systems.

As reported in Figure A.4, the different verifica-

tion steps depend on the advancement level of the

project. The first three steps are conducted during

the design phase:

• system functional review,

• preliminary design review,

• critical design review,

and they are follow by the operational testing:

• test readiness review,

• system verification review.

Systems Analysis and Control

Systems Analysis and Control include technical

management activities required to measure pro-

gress, evaluate and select alternatives, and docu-

ment data and decisions. These activities apply to

all steps of the systems engineering process.

System analysis activities include trade-off stud-

ies, effectiveness analyses, and design analyses.

They evaluate alternative approaches to satisfy

technical requirements and program objectives,

and provide a rigorous quantitative basis for se-

lecting performance, functional, and design re-

quirements.

Control activities include risk management, con-

figuration management, data management, and

performance-based progress measurement includ-

ing event-based scheduling, Technical Perfor-

mance Measurement (TPM), and technical re-

views.

Systems Engineering Process Output

Process output is dependent on the level of devel-

opment. It will include the decision database, the

system or configuration item architecture, and the

baselines, including specifications, appropriate to

the phase of development.

In general, it is any data that describes or controls

the product configuration or the processes neces-

sary to develop that product.

A.8 SUMMARY POINTS

i. Systems engineering management is a

multifunctional process that integrates life

cycle functions, the systems engineering

problem-solving process, and progressive

baselining.

ii. Integrated Product Teams should apply the

systems engineering process to develop a

life cycle balanced-design solution.

iii. The systems engineering process is applied

to each level of development, one level at a

time.

iv. Fundamental systems engineering activi-

ties are requirements analysis, functional

analysis/allocation, and design synthesis,

all of which are balanced by system analy-

sis and control activities.

v. Baseline phasing provides for an increas-

ing level of descriptive detail of the prod-

ucts and processes with each application of

the systems engineering process. In fact,

baselining is a nut-shell concept, in which

a first system definition leads to compo-

nent definitions, and then to component

designs, that finally lead to a product.

vi. The output of each application of the sys-

tems engineering process is a major input

to the next process application.

28

29

B.1 INTODUCTION

This appendix introduces the fundamental con-

cepts developed by the CMMI Institute

The reported notions are not necessary to under-

stand the present essay, but provide a useful back-

ground to develop TPL in accordance with the

CMMI model adopted by the Training Systems

Organization of LAD.

B.2 CAPABILITY MATURITY MODELS

A Capability Maturity Model® (CMM®), includ-

ing CMM Integration, is a simplified representa-

tion of the world. CMMs focus on improving pro-

cesses in an organization. They contain the essen-

tial elements of effective processes for one or

more disciplines and describe an evolutionary im-

provement path from ad hoc, immature processes

to disciplined, mature ones with improved quality

and effectiveness.

Like other CMMs, CMMI models provide guid-

ance to use when developing processes. CMMI

models are not processes or process descriptions;

the actual processes used in an organization de-

pend on many factors, including application do-

mains and organization structure and size. In par-

ticular, the process areas of a CMMI model typi-

cally do not map one to one with the processes

used in the organization of a specific Company.

CMMI for Development (CMMI-DEV) consists

of best practices that address development activi-

ties applied to products and services. It addresses

practices that cover the product’s lifecycle from

conception through delivery and maintenance.

The emphasis is on the work necessary to build

and maintain the total product

B.3 PROCESS AREA COMPONENTS

Model components are grouped into three catego-

ries – required, expected, and informative – that

reflect how to interpret them.

Required components are CMMI components that

are essential to achieving process improvement in

a given process area. This achievement must be

visibly implemented in an organization’s process-

es. Goal satisfaction is used in appraisals as the

basis for deciding whether a process area has been

satisfied.

A Company adopting the CMMI model must pre-

sent the required components in order to institu-

tionalize process areas; as long as one of the goals

for a certain maturity level is not achieved the cor-

responding level cannot be considered as reached.

Expected components describe the activities that

are important in achieving a required CMMI

component. Expected components guide those

who implement improvements or perform ap-

praisals.

Before goals can be considered to be satisfied, ei-

ther their practices as described, or acceptable al-

ternatives to them, must be present in the planned

and implemented processes of the organization.

In other words, a Company is allowed to achieve

the goals using activities different from the ones

described in the practices, as long as they satisfy

the need of achieving the goals

Informative components are neither expected nor

required. These components can be example box-

es, detailed explanations, or other helpful infor-

mation. Sub-practices, notes, references, goal ti-

tles, practice titles, sources, example work prod-

ucts, and generic practice elaborations are in-

formative model components.

The informative material plays an important role

in understanding the required and expected model

Appendix B
INTRODUCTION TO THE CMMI® INSTITUTE

DEVELOPMENT MODEL

30

components. It is often impossible to adequately

describe the behaviour required or expected of an

organization using only a single goal or practice

statement. The model’s informative material pro-

vides information necessary to achieve the correct

understanding of goals and practices and thus

cannot be ignored.

The components found in each process area and in

the generic goals and generic practices are sum-

marized in Figure B.1 to illustrate their relation-

ships.

Process Areas

A process area is a required component consisting

of a cluster of related practices in an area that,

when implemented collectively, satisfies a set of

goals considered important for making improve-

ment in that area.

CMMI models divide practices in a total of 22

process areas; 16 of them are known as core pro-

cess areas, since they cover basic concepts that are

fundamental to process improvement in any area

of interest (i.e., acquisition, development, ser-

vices). Some of the material in the core process

areas is the same in all constellations, while other

material may be adjusted to address a specific area

of interest. Consequently, the material in the core

process areas may not be exactly the same.

Purpose Statements

A purpose statement describes the purpose of the

process area.

Introductory Notes

The introductory notes section of the process area

Figure B.1 – CMMI model components

31

describes the major concepts covered in the pro-

cess area. An example from the introductory notes

of the Project Monitoring and Control process ar-

ea is ‘When actual status deviates significantly

from expected values, corrective actions are taken

as appropriate’.

Related Process Areas

The related process areas section reflects the high-

level relationships among the process areas. Re-

lated process areas section is an informative com-

ponent.

An example of a reference found in the Related

Process Areas section of the Project Planning pro-

cess area is ‘Refer to the Risk Management pro-

cess area for more information about identifying

and analysing and mitigating risks’.

Specific Goals

A specific goal describes the unique characteris-

tics that must be present to satisfy the process ar-

ea. A specific goal is a required model component

and is used in appraisals to help determine wheth-

er a process area is satisfied.

For example, a specific goal from the Configura-

tion Management process area is ‘Integrity of

baselines is established and maintained’.

Only the statement of the specific goal is a re-

quired model component. Goal title and notes a

are considered informative model components.

Specific Practices

A specific practice is the description of an activity

that is considered important in achieving the asso-

ciated specific goal. A specific practice is an ex-

pected model component.

For example, a specific practice from the Project

Monitoring and Control process area is ‘Monitor

commitments against those identified in the pro-

ject plan’.

Only the statement of the specific practice is an

expected model component. The title of a specific

practice (preceded by the practice number) and

notes associated with the specific practice are

considered informative model components.

Example Work Products

The example work products section lists sample

outputs from a specific practice. An example work

product is an informative model component.

Subpractices

A subpractice is a detailed description that pro-

vides guidance for interpreting and implementing

a specific or generic practice. Subpractices are an

informative component meant only to provide

ideas that may be useful for process improvement.

Generic Goals

Generic goals are called ‘generic’ because the

same goal statement applies to multiple process

areas. A generic goal describes the characteristics

that must be present to institutionalize processes

that implement a process area. A generic goal is a

required model component and is used in apprais-

als to determine whether a process area is satis-

fied. An example of a generic goal is ‘The process

is institutionalized as a managed process’.

Only the statement of the generic goal is a re-

quired model component. Goal title and notes a

are considered informative model components.

Generic Practices

Generic practices are called ‘generic’ because the

same practice applies to multiple process areas.

The generic practices associated with a generic

goal describe the activities that are considered im-

portant in achieving the generic goal and contrib-

ute to the institutionalization of the processes as-

sociated with a process area. A generic practice is

an expected model component.

For example, a generic practice for the generic

goal ‘The process is institutionalized as a man-

aged process’ is “Provide adequate resources for

performing the process, developing the work

products, and providing the services of the pro-

cess’.

Only the statement of the generic practice is an

expected model component.

Generic Practice Elaborations

Generic practice elaborations appear after generic

practices to provide guidance on how the generic

practices can be applied uniquely to process areas.

A generic practice elaboration is an informative

model component.

B.4 CAPABILITY AND MATURITY LEV-

ELS

Levels are used in CMMI-DEV to describe an

evolutionary path recommended for an organiza-

32

tion that wants to improve the processes it uses to

develop products or services. Levels can also be

the outcome of the rating activity in Company ap-

praisals. Appraisals can apply to entire organiza-

tions or to smaller groups such as a group of pro-

jects or a division.

CMMI supports two improvement paths based on

levels, that in turn are associated with a type of

level and an approach to process improvement

called ‘representation’ (see Figure B.2 to better

understand the two different representations):

The first path enables organizations to incremen-

tally improve processes corresponding to an indi-

vidual process area (or group of process areas) se-

lected by the organization. This path is associated

to capability levels and continuous representa-

tions to achieve them.

The second path enables organizations to improve

a set of related processes by incrementally ad-

dressing successive sets of process areas. This

path is associated with maturity levels and staged

representations to achieve them.

Figure B.2 – Process areas in the continuous and staged representations

33

The LAD TSO managed to reach both capability

and maturity level 3. It can be observed that TPL

goals and features reflect the level 3 concepts

hereafter explained.

Capability Level 3: Defined

A capability level 3 process is characterized as a

defined process. A defined process:

• is a managed process that is tailored from the

organization’s set of standard processes ac-

cording to the organization’s tailoring guide-

lines;

• has a maintained process description;

• contributes process related experiences to the

organizational process assets.

A critical distinction between capability levels 2

and 3 is the scope of standards, process descrip-

tions, and procedures. At capability level 2, the

standards, process descriptions, and procedures

can be quite different in each specific instance of

the process (e.g., on a particular project). At capa-

bility level 3, the standards, process descriptions,

and procedures for a project are tailored from the

organization’s set of standard processes to suit a

particular project or organizational unit and there-

fore are more consistent, except for the differ-

ences allowed by the tailoring guidelines.

Another critical distinction is that at capability

level 3 processes are typically described more rig-

orously than at capability level 2. A defined pro-

cess clearly states the purpose, inputs, entry crite-

ria, activities, roles, measures, verification steps,

outputs, and exit criteria.

At capability level 3, processes are managed more

proactively using an understanding of the interre-

lationships of the process activities and detailed

measures of the process and its work products.

Maturity Level 3: Defined

At maturity level 3, processes are well character-

ized and understood, and are described in stand-

ards, procedures, tools, and methods. The organi-

zation’s set of standard processes, which is the ba-

sis for maturity level 3, establishes consistency

across the organization and is improved over time.

Projects establish their defined processes by tai-

loring the organization’s set of standard processes

according to tailoring guidelines.

Similarly to what occurs at capability level 3, at

maturity level 3 the standards, process descrip-

tions, and procedures for a project are tailored

from the organization’s set of standard processes

to suit a particular project or organizational unit

and therefore are more consistent except for the

differences allowed by the tailoring guidelines.

Another critical distinction is that at maturity level

3, processes are typically described more rigor-

ously than at maturity level 2. A defined process

clearly states the purpose, inputs, entry criteria,

activities, roles, measures, verification steps, out-

puts, and exit criteria.

At maturity level 3, processes are managed more

proactively using an understanding of the interre-

lationships of process activities and detailed

measures of the process, its work products, and its

services.

Finally, at maturity level 3 the organization fur-

ther improves its processes that are related to the

maturity level 2 process areas. Generic practices

associated with generic goal 3 that were not ad-

dressed at maturity level 2 are applied to achieve

maturity level 3.

B.5 PROCESS AREAS

Process areas are viewed differently in the two

representations. Figure B.2 compares views of

how process areas are used in the continuous rep-

resentation and the staged representation.

The continuous representation enables the organi-

zation to choose the focus of its process improve-

ment efforts by choosing those process areas, or

sets of interrelated process areas, that best benefit

the organization and its business objectives. Alt-

hough there are some limits on what an organiza-

tion can choose because of the dependencies

among process areas, the organization has consid-

erable freedom in its selection.

To support those who use the continuous repre-

sentation, process areas are organized into four

categories:

1. Process Management,

2. Project Management,

3. Engineering, and

4. Support.

These categories emphasize some of the key rela-

tionships that exist among the process areas.

Once process areas are selected, the desired and

appropriate capability level must be selected, so to

define how mature the processes associated with

those process areas should become.

34

The selection of a combination of process areas

and capability levels is typically described in a

‘target profile’. A target profile defines all of the

process areas to be addressed and the targeted ca-

pability level for each. This profile governs which

goals and practices the organization will address

in its process improvement efforts.

Organizations that target capability levels higher

than 1 concentrate on the institutionalization of

selected processes in the organization by imple-

menting generic goals and practices.

The staged representation provides a path of im-

provement from maturity level 1 to maturity level

5 that involves achieving the goals of the process

areas at each maturity level. To support those who

use the staged representation, process areas are

grouped by maturity level, indicating which pro-

cess areas to implement to achieve each maturity

level.

and capability levels is typically described in a

‘target profile’. A target profile defines all of the

process areas to be addressed and the targeted ca-

pability level for each. This profile governs which

goals and practices the organization will address

in its process improvement efforts.

Organizations that target capability levels higher

than 1 concentrate on the institutionalization of

selected processes in the organization by imple-

menting generic goals and practices.

Figure B.3 provides a table of CMMI-DEV pro-

cess areas and their associated categories and ma-

turity levels.

B.6 PROCESS IMPROVEMENT PROGRAM

Three selections must be made to apply CMMI to

an organization for process improvement:

1. selecting a part of the organization;

2. selecting a model;

3. selecting a representation.

When selecting the projects to involve in process

improvement program the available resources

should be specified and considered in order to not

overcharge the effort. The selection should also

consider organizational, product, and work homo-

geneity.

Selecting an appropriate model is also essential to

a successful process improvement program. For

example, the CMMI-DEV model focuses on ac-

tivities for developing quality products and ser-

vices. The CMMI-ACQ model focuses on activi-

ties for initiating and managing the acquisition of

products and services. The CMMI-SVC model fo-

cuses on activities for providing quality services

to the customer and end users. When selecting a

model, appropriate consideration should be given

to the primary focus of the organization and pro-

jects, as well as to the processes necessary to sat-

isfy business objectives.

The selected representation (capability or maturity

levels) must fit the current concept of process im-

provement. Regardless of which representation is

chosen, nearly any process area or group of pro-

cess areas can be selected to guide improvement,

although dependencies among process areas

should be considered when making such a selec-

tion.

As process improvement plans and activities pro-

gress, other important selections must be made,

including whether to use an appraisal, which ap-

praisal method should be used, which projects

should be appraised, how training for staff should

be secured, and which staff members should be

trained.

B.7 CMMI MODELS

CMMI models describe best practices that organi-

zations have found to be productive and useful to

achieving their business objectives. Regardless of

the organization, professional judgment must be

used when interpreting CMMI best practices for

specific situation, needs, and business objectives.

This use of judgment is reinforced when words

such as ‘adequate’, ‘appropriate’ or ‘as needed’

appear in a goal or practice. These words are used

for activities that may not be equally relevant in

all situations thus goals and practices must be in-

terpreted in ways that specifically work for the or-

ganization.

As a customer begins using a CMMI model to

improve the processes of an organization, real

world processes should be mapped to CMMI pro-

cess areas. This mapping enables the initial

judgement and the later tracking of the level of

35

conformance of the organization to the adopted

CMMI model. Opportunities for improvement are

also identified thanks to mapping.

To interpret practices, it is important to consider

the overall context in which these practices are

used and to determine how well the practices sat-

isfy the goals of a process area in that context.

CMMI models do not prescribe nor imply pro-

cesses that are right for any organization or pro-

ject. Instead, CMMI describes minimal criteria

necessary to plan and implement processes select-

ed by the organization for improvement based on

business objectives.

CMMI practices purposely use nonspecific

phrases such as ‘relevant stakeholders’, ‘as appro-

priate’ and ‘as necessary’ to accommodate the

needs of different organizations and projects, that

also could differ at various points of the life of

project.

B.8 PROCESS ISTITUTIONALIZATION

Institutionalization is an important concept in pro-

cess improvement. When mentioned in the gener-

ic goal and generic practice descriptions, institu-

tionalization implies that the process is ingrained

Process Area Category Maturity Level

Causal Analysis and Resolution (CAR) Support 5

Configuration Management (CM) Support 2

Decision Analysis and Resolution (DAR) Support 3

Integrated Project Management (IPM) Project Management 3

Measurement and Analysis (MA) Support 2

Organizational Process Definition (OPD) Process Management 3

Organizational Process Focus (OPF) Process Management 3

Organizational Performance Management (OPM) Process Management 5

Organizational Process Performance (OPP) Process Management 4

Organizational Training (OT) Process Management 3

Product Integration (PI) Engineering 3

Project Monitoring and Control (PMC) Project Management 2

Project Planning (PP) Project Management 2

Process and Product Quality Assurance (PPQA) Support 2

Quantitative Project Management (QPM) Project Management 4

Requirements Development (RD) Engineering 3

Requirements Management (REQM) Project Management 2

Risk Management (RSKM) Project Management 3

Supplier Agreement Management (SAM) Project Management 2

Technical Solution (TS) Engineering 3

Validation (VAL) Engineering 3

Verification (VER) Engineering 3

Figure B.3 – Table of process areas, categories, and maturity levels

36

in the way the work is performed and there is

commitment and consistency to performing (i.e.,

executing) the process.

An institutionalized process is more likely to be

retained during times of stress. When the require-

ments and objectives for the process change, how-

ever, the implementation of the process may also

need to change to ensure that it remains effective.

The generic practices describe activities that ad-

dress these aspects of institutionalization.

The degree of institutionalization is embodied in

the generic goals and expressed in the names of

the processes associated with each goal.

Performed Process

A performed process is a process that accomplish-

es the work necessary to satisfy the specific goals

of a process area.

Managed Process

A managed process is a performed process that is

planned and executed in accordance with policy,

employs skilled people having adequate resources

to produce controlled outputs and involves rele-

vant stakeholders is monitored. Moreover, it is

controlled, reviewed and is evaluated for adher-

ence to its process description.

A critical distinction between a performed process

and a managed process is the extent to which the

process is managed. A managed process is

planned and the execution of the process is man-

aged against the plan.

Defined Process

A defined process is a managed process that is tai-

lored from the organization’s set of standard pro-

cesses according to the organization’s tailoring

guidelines; has a maintained process description;

and contributes process related experiences to the

organizational process assets.

A critical distinction between a managed process

and a defined process is the scope of application

of the process descriptions, standards, and proce-

dures. For a managed process, the process de-

scriptions, standards, and procedures are applica-

ble to a particular project, group, or organizational

function. As a result, the managed processes of

two projects in one organization can be different.

B.9 ORGANIZATIONAL PROCESS ASSETS

Organizational process assets are artifacts that re-

late to describing, implementing, and improving

processes. These artifacts are assets because they

are developed or acquired to meet the business ob-

jectives of the organization and they represent in-

vestments by the organization that are expected to

provide current and future business value.

The organizational process assets developed by an

organization are collected in its Organization’s

Process Asset Library (OPAL).

OPAL is a library of information used to store and

make process assets that are useful to those who

are defining, implementing, and managing pro-

cesses in the organization. This library contains

process assets that include process related docu-

mentation such as policies, defined processes,

checklists, lessons learned documents, templates,

standards, procedures, plans, and training materi-

als.

37

C.1 ABOUT THE EPF PROJECT

The Eclipse Process Framework (EPF) project

aims at producing a customizable software pro-

cess engineering framework, with exemplary pro-

cess content and tools, supporting a broad variety

of project types and development styles.

Method content and processes are structured

based on a formal meta-model. The initial version

of this meta-model has been derived from IBM's

Unified Method Architecture (UMA), that is an

evolution of the current OMG (Object Manage-

ment Group) industry standard Software Process

Engineering Meta-model (SPEM) v1.1 integrating

concepts from IBM Rational Unified Process,

IBM Global Services, and IBM Rational Summit

Ascendant.

IBM and other OMG partners are working on

making UMA, with improvements suggested by

partners, to become SPEM 2.0. The initial exem-

plary tool implementation for EPF will be based

on the first draft submission. As SPEM 2.0 stabi-

lizes, it is expected to update the EPF to the final

specification. The meta-model will be extensible

through the usage of custom attributes and custom

process elements as well as normal Eclipse Mod-

eling Framework (EMF) extensibility mecha-

nisms.

C.2 EXEMPLARY TOOL: EPF COMPOSER

The EPF Composer is a free, open-source tool

platform for enterprise architects, programme

managers, process engineers, project leads and

project managers to implement, deploy, and main-

tain processes for organisations or individual pro-

jects.

The tool helps development professionals set up a

knowledge base of intellectual capital that lets

them browse, manage and deploy content. This

content can be licensed, acquired, or – perhaps

most importantly – developed in house. It can

comprise method definitions, guidelines, tem-

plates, principles, best practices, internal proce-

dures and regulations, training material and any

other general descriptions of how they want and

need to develop software.

The information can be used for reference and ed-

ucation and as the basis for developing standard

processes. All the managed content can then be

published to html and deployed to servers for dis-

tributed use.

Typically, a Company needs to address two key

problems in order to deploy new processes suc-

cessfully:

1. development teams need to be educated on the

methods applicable to the roles for which they

are responsible;

2. development teams need to understand how to

apply these methods throughout the develop-

ment lifecycle. That means they need to de-

fine or select a process and they need a clear

understanding of how the different tasks relate

to each other;

Figure C.1 – Exemplary tool: EPF Composer

Appendix C
INTRODUCTION TO EPF COMPOSER

38

For these purposes, the exemplary tool EPF Com-

poser provides to the user the following capabili-

ties:

Method Authoring

Best practices can be captured as a set of reusable

method building blocks as defined in the meta-

model; roles, work products, tasks, and guidance,

such as templates, guidelines, examples, and

check lists. A rich-text editor allows you to docu-

ment method elements, and graphical views pre-

sent diagrams showing relevant relationships.

Reuse is facilitated by allowing you to create a

method element as a derivative of another method

element through various inheritance-type of rela-

tionships. This allows you to e.g. specify that a

Systems Architect has similar responsibilities to a

Software Architect by expressing the differences,

reusing everything that is common.

Process Authoring

Reusable process building blocks can be orga-

nized into processes along a lifecycle dimension

by defining e.g. Work Breakdown Structures

(WBSs), and when in the lifecycle to produce

what work products in which state.

The tool allows you to construct reusable chunks

of processes through so called capability patterns.

A capability pattern may for example explain how

to define, design, implement and test a scenario or

a user story, and this pattern can now be reused in

a variety of processes. The tool also allows you to

define delivery processes, which are end-to-end

processes. Structural information can often be ed-

ited with graphical as well as non-graphical edi-

tors.

Library Management and Content Extensibil-

ity

An XMI-based library enables persistency and

flexible configuration management as well as con-

tent interchange for distributed client-server im-

plementations. Method and process content can be

packaged into content plug-ins and content pack-

ages allowing simple distribution, management

and extensibility of content. As content plug-ins

are added to your content library, the tool will re-

solve dependencies between process elements.

Configuring and Publishing

A process configuration can be created by select-

ing a set of content plug-ins and content packages.

Optionally, an exemplary process configuration

can be used as a starting point, and content plug-

ins and content packages added or removed from

this exemplary configuration.

As an example, you may start with a generic ex-

emplary process suitable for small collocated

teams and add content plug-ins containing specific

guidance for each of Eclipse, JUnit, J2EE, and

IBM Rational RequisitePro. The delivery process-

es associated with a configuration can be further

customized.

As the configuration is published, the tool re-

solves the many relationships that may exist be-

tween process elements in the selected plug-ins

and packages, and generates a set of html pages

with links representing relationships between pro-

cess elements to make the resulting Web site easy

to navigate. The resulting Web site is viewable via

a web browser, without the need for a Web server.

This will allow users on all platforms to view the

published process.

C.3 PLUG-INS LOGICS

All the method library content is organized in

modular units called method plug-ins.

A new method plug-in:

• starts out as a standalone element, with no

linking to any other plug-in;

• has a designated addressing defined by its

complete name;

• has no content inside, but presents a default

setting to insert method content, capability

patterns and delivery processes (also see Fig-

ure C.2);

• may be linked to other plug-ins by ticking

their names in the ‘Referenced Plug-ins’ box,

so permitting the new plug-in to use their

method content and processes;

• may be filled with new method content and

processes;

• can be exported from or imported to any EPF

Composer method library (paying attention,

though, to the active references).

References are a very critical feature of EPF

Composer. They make possible to effectively re-

call and reuse existing content but, on the other

hand, an inadequate management can cause sever-

39

al problems for what concerns reusing content,

publishing it, exporting/importing plug-ins.

Content developers should be aware of the possi-

ble problems and pay a particular attention at

avoiding circular references.

In fact, references must present a tree-structure

consisting of many different chains of references,

in which a plug-in that lays at the top of a chain

can draw every content of the plug-ins it finds

along that chain.

C.4 EPF METHOD FRAMEWORK

The most fundamental principle of EPF Composer

is the separation of reusable core method content

from its application in processes. Almost all the

EPF Composer concepts are categorised along this

separation.

Method content describes what is to be produced;

the necessary skills required and the step-by-step

explanations describing how specific development

goals are achieved. These method content de-

scriptions are independent of a development

lifecycle.

Processes describe the development lifecycle, tak-

ing the method content elements and relating them

into semi-ordered sequences that are customised

to specific types of projects.

Figure C.3 provides a summary of the key ele-

ments used in EPF Composer and their relation-

ships with processes and/or method content.

As it can be observed, method content is primarily

expressed using work products, roles, tasks, and

guidance. Guidance, such as checklists, examples,

or roadmaps, can also be defined to provide ex-

emplary walkthroughs of a process.

On the right-hand side of the diagram there are

the elements used to represent processes in EPF

Composer. The main process element is the activ-

ity, that can be nested to define a work breakdown

structure and be related with other process ele-

ments to define a flow of work. Activities also

contain descriptors base on method content ele-

ments. The two main types of process supported

by EPF Composer are the delivery process and the

capability pattern; they both can be built of activi-

ties.

Figure C.3 – EPF method framework

Figure C.2 – Setting of a new plug-in

40

C.5 EPF COMPOSER ELEMENTS

All the method content and process elements in-

troduced in the previous chapter are hereafter

listed and described.

Task

A task defines a unit of work that needs to be

done to transform inputs into outputs through a

series of steps performed by one or more roles in-

dependent of a particular work breakdown struc-

ture (WBS). A task may be divided into steps.

Role

It describes a standard set of responsibilities and

corresponding skills necessary to perform a task

or create a work product. A role does not corre-

spond with a single person. In fact, a same person

may execute several roles simultaneously or dur-

ing the course of a project, and a role may like-

wise be defined to represent a group such as a re-

view board.

Work Product

It is used to define and describe the items needed

as input or created as output of one or more tasks

that are the responsibility of a role. EPF Compos-

er allows three types of work products: artefacts,

outcomes and deliverables.

An artefact is a tangible work product that is con-

sumed, produced, or modified by one or more

tasks. Artefacts may be composed of other arte-

facts. An outcome is an intangible work product

that may be a result or state. It may also be used

to describe work products that are not formally

defined. A deliverable is a collection of work

products, usually artefacts, used to define typical

or recommended content in the form of work

products packaged for delivery.

Guidance

A General term referring to all types of material

that provide additional detail on other types of el-

ements:

• Checklist: it identifies a series of items that

need to be completed or verified. Checklists

are often used in reviews such as

walkthroughs or inspections.

• Concept: it outlines key ideas or basic princi-

ples that serve as foundation for additional in-

formation.

• Example: used to include typical samples of

the items to be produced, may often only be a

partial sample that is intended as further guid-

ance rather than something to be reused.

• Guideline: it provides additional detail on

how to handle a particular method element.

Guidelines most commonly describe how to

perform some set of actions related to tasks or

provide additional rules or recommendations

related to the representation of work products.

• Estimation consideration: it describes the

amount of effort to produce a work product or

perform a task including any influencing fac-

tors.

• Practice: it describes a proven way of doing

something or common approaches and strate-

gies that represent best practices. This is also

used to represent standards and policies relat-

ed to methods.

• Report: used to provide guidance on repre-

senting the output of an automated tool that

may be a combination of information from

one or more other work products.

• Reusable asset: linking to intellectual capital

that can be utilized to perform some task or

leveraged as a starting point for the creation

of a solution. This type of guidance is usually

represented as a link to some external source.

This may include assets such as source code,

templates, patterns, architectural frameworks,

domain models, and so on – that can be re-

used in a different context.

• Roadmap: specific to a process that represents

a linear walkthrough of those items from a

particular perspective.

• Supporting material: catch-all for other types

of guidance not specifically defined else-

where.

• Template: it specifies the structure of a work

product by providing a pre-defined table of

contents, sections, packages, and/or headings,

a standardized format, as well as descriptions

on how the sections and packages are sup-

posed to be used and completed. Often pro-

vided as a form or empty instanced of a work

product that can be used as starting point for

the creation of a new one.

• Term definition: provides definitions that are

used to build up the library glossary.

41

• Tool mentor: explains how to apply a specific

tool to accomplish a task, perform a set of

steps or instantiate a particular work product.

• White paper: it represents externally pub-

lished papers that can be read and understood

in isolation of other content elements.

Custom Category

Used to categorize content based on the user's cri-

teria. One important use is, as already stated, for

constructing views for publishing.

Activity

In the UMA an activity is a breakdown element

which supports the nesting and logical grouping

of related process elements, such as descriptor and

sub-activities, thus forming the breakdown struc-

tures.

Like any other process or sub-process, the activity

can generate an activity diagram to graphically

show the relationships between the work break-

down elements (WBEs).

Capability Pattern

A sub-process that expresses and communicates

process knowledge for a key area of interest, such

as a discipline or a best practice. Capability pat-

terns are also used as building blocks to assemble

delivery processes or larger capability patterns.

This ensures optimal reuse and application of their

key best practices in process authoring activities

in EPF Composer.

Delivery Process

It represents a complete and integrated process

template for performing one specific type of pro-

ject. It describes a complete end-to-end project

lifecycle and it is used as a reference for running

projects with similar characteristics.

Descriptor

It defines how method content is represented in a

process. Like shown in figure, three are the kind

of descriptors: task descriptor, role descriptor and

work product descriptor.

They are the key concept for realizing the separa-

tion of process from method content. A descriptor

has its own relationships and properties which can

be modified rather independently of the default

relationships defined in the method content.

42

43

REFERENCES AND RESOURCES LIST

• Systems Engineering Fundamentals, Defense Acquisition University Press, January 2001

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-

2005/readings/sefguide_01_01.pdf

• CMMI Institute

https://cmmiinstitute.com

• CMMI for Development v. 1.3, CMMI Product Team, November 2010

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf

• CMMI for Development v. 1.3 – WIT (Web Idea Tree) version

http://cmmis.free.fr/cmmi-dev/text/pa-rm.php

• CMMI Model Foundation – What is it?

http://www.plays-in-business.com/cmmi-model-foundation-what-is-it/

• Eclipse Process Framework Project

https://projects.eclipse.org/projects/technology.epf

• Eclipse Process Framework (EPF) Composer - Installation, Introduction, Tutorial and Manual, Bjorn

Tuft, March 2010

https://www.eclipse.org/epf/general/EPF_Installation_Tutorial_User_Manual.pdf

• Increasing Development Knowledge with EPFC, Peter Haumer, 2006

http://www.haumer.net/paper/EPFC-eclipsereview.pdf

• Microsoft Project

https://products.office.com/en-us/Project/project-and-portfolio-management-software

• EPF Composer

http://www.eclipse.org/downloads/download.php?file=/technology/epf/composer/release/epf-composer-

1.5.2-win32.zip

• EPF Practices 1.5.1.5

http://www.eclipse.org/downloads/download.php?file=/technology/epf/PracticesLibrary/library/epf_pra

ctices_library_1.5.1.5_20121212.zip

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://cmmiinstitute.com/
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
http://cmmis.free.fr/cmmi-dev/text/pa-rm.php
http://www.plays-in-business.com/cmmi-model-foundation-what-is-it/
https://projects.eclipse.org/projects/technology.epf
https://www.eclipse.org/epf/general/EPF_Installation_Tutorial_User_Manual.pdf
http://www.haumer.net/paper/EPFC-eclipsereview.pdf
https://products.office.com/en-us/Project/project-and-portfolio-management-software
http://www.eclipse.org/downloads/download.php?file=/technology/epf/composer/release/epf-composer-1.5.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/technology/epf/composer/release/epf-composer-1.5.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/technology/epf/PracticesLibrary/library/epf_practices_library_1.5.1.5_20121212.zip
http://www.eclipse.org/downloads/download.php?file=/technology/epf/PracticesLibrary/library/epf_practices_library_1.5.1.5_20121212.zip

44

45

ACRONYMS

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMMI-DEV Capability Maturity Model Integration for DEVelopment

ECS Environmental Control System

EMF Eclipse Modeling Framework

EPF Eclipse Process Framework

HTE How To Expand

HTN How To Navigate

HWD How Was Developed

LAD Leonardo Aircraft Division

OMG Object Management Group

OPAL Organizational Process Asset Library

TSO Training Systems Organization

TPL TSO Practices Library

TYP Tailor Your Process

SEP Standard Enterprise Practices

SPEM Software Process Engineering Meta-model

UAV Unmanned Aerial Vehicle

UMA Unified Method Architecture

WBE Work Breakdown Element

WBS Work Breakdown Structure

XMI XMI Metadata Interchange

XML eXtensible Markup Language

